EnsembleKalmanProcesses.jl: Derivative-free ensemble-based model calibration

EnsembleKalmanProcesses.jl is a Julia-based toolbox that can be used for a broad class of black-box gradient-free optimization problems. Specifically, the tools enable the optimization, or calibration, of parameters within a computer model in order to best match user-defined outputs of the model with available observed data (Kennedy & O’Hagan, 2001). Some of the tools can also approximately quantify parametric uncertainty (Huang, Huang, et al., 2022). Though the package is written in Julia (Bezanson et al., 2017), a read–write TOML-file interface is provided so that the tools can be applied to computer models implemented in any language. Furthermore, the calibration tools are non-intrusive, relying only on the ability of users to compute an output of their model given a parameter value.

[1]  E. Mezura-Montes,et al.  Metaheuristics: A Julia Package for Single- and Multi-Objective Optimization , 2022, J. Open Source Softw..

[2]  Oliver R. A. Dunbar,et al.  Training Physics‐Based Machine‐Learning Parameterizations With Gradient‐Free Ensemble Kalman Methods , 2022, Journal of Advances in Modeling Earth Systems.

[3]  Daniel Z. Huang,et al.  Efficient derivative-free Bayesian inference for large-scale inverse problems , 2022, Inverse Problems.

[4]  Oliver R. A. Dunbar,et al.  An Efficient Bayesian Approach to Learning Droplet Collision Kernels: Proof of Concept Using “Cloudy,” a New n‐Moment Bulk Microphysics Scheme , 2022, Journal of Advances in Modeling Earth Systems.

[5]  Oliver R. A. Dunbar,et al.  Ensemble‐Based Experimental Design for Targeting Data Acquisition to Inform Climate Models , 2022, Journal of Advances in Modeling Earth Systems.

[6]  Oliver R. A. Dunbar,et al.  Epidemic management and control through risk-dependent individual contact interventions , 2021, PLoS Comput. Biol..

[7]  Oliver R. A. Dunbar,et al.  Parameter Uncertainty Quantification in an Idealized GCM With a Seasonal Cycle , 2021, Journal of Advances in Modeling Earth Systems.

[8]  Yoonsang Lee,et al.  Sampling error correction in ensemble Kalman inversion , 2021, ArXiv.

[9]  A. Stuart,et al.  Iterated Kalman methodology for inverse problems , 2021, J. Comput. Phys..

[10]  Oliver R. A. Dunbar,et al.  Calibration and Uncertainty Quantification of Convective Parameters in an Idealized GCM , 2020, 2012.13262.

[11]  Andrew M. Stuart,et al.  Ensemble Kalman inversion for sparse learning of dynamical systems from time-averaged data , 2020, J. Comput. Phys..

[12]  Tapio Schneider,et al.  Calibrate, emulate, sample , 2020, J. Comput. Phys..

[13]  S. Reich,et al.  Affine invariant interacting Langevin dynamics for Bayesian inference , 2019, SIAM J. Appl. Dyn. Syst..

[14]  Andrew M. Stuart,et al.  Interacting Langevin Diffusions: Gradient Structure and Ensemble Kalman Sampler , 2019, SIAM J. Appl. Dyn. Syst..

[15]  Patrick Kofod Mogensen,et al.  Optim: A mathematical optimization package for Julia , 2018, J. Open Source Softw..

[16]  Andrew M. Stuart,et al.  Analysis of the Ensemble Kalman Filter for Inverse Problems , 2016, SIAM J. Numer. Anal..

[17]  Alan Edelman,et al.  Julia: A Fresh Approach to Numerical Computing , 2014, SIAM Rev..

[18]  A. Stuart,et al.  Ensemble Kalman methods for inverse problems , 2012, 1209.2736.

[19]  P. Houtekamer,et al.  Data Assimilation Using an Ensemble Kalman Filter Technique , 1998 .

[20]  G. Evensen Sequential data assimilation with a nonlinear quasi‐geostrophic model using Monte Carlo methods to forecast error statistics , 1994 .

[21]  M. Morzfeld,et al.  Localization in Ensemble Kalman inversion , 2022, ArXiv.

[22]  Zoubin Ghahramani,et al.  Turing: A Language for Flexible Probabilistic Inference , 2018 .

[23]  P. Houtekamer,et al.  A Sequential Ensemble Kalman Filter for Atmospheric Data Assimilation , 2001 .

[24]  A. O'Hagan,et al.  Bayesian calibration of computer models , 2001 .