Poly(Ether-Ester)-Based Solid Polymer Electrolytes with High Li-Ion Transference Number for High Voltage All-Solid-State Lithium Metal Batteries

[1]  Fangyuan Hu,et al.  A nano fiber–gel composite electrolyte with high Li+ transference number for application in quasi-solid batteries , 2022, eScience.

[2]  H. Roghani‐Mamaqani,et al.  Starch acetate and carboxymethyl starch as green and sustainable polymer electrolytes for high performance lithium ion batteries , 2022, Applied Energy.

[3]  Jinbao Xu,et al.  Synthesis and Characterization of Polyurethane with Poly(ether-ester) Diols Soft Segments Consisted by Ether and Ester Linkages in One Repeating Unit , 2022, European Polymer Journal.

[4]  M. Winter,et al.  Green Polymer Electrolytes based on Polycaprolactones for Solid-State High-Voltage Lithium Metal Batteries. , 2022, Macromolecular rapid communications.

[5]  G. Cao,et al.  A High Power Density Solid Electrolyte Based on Polycaprolactone for High-Performance All-Solid-State Flexible Lithium Batteries , 2022, Electrochimica Acta.

[6]  Xia Tao,et al.  Trimethyl phosphate-enhanced polyvinyl carbonate polymer electrolyte with improved interfacial stability for solid-state lithium battery , 2022, Rare Metals.

[7]  H. Fang,et al.  Highly Uniform Lithiated Nafion Thin Coating on Separator as an Artificial SEI Layer of Lithium Metal Anode toward Suppressed Dendrite Growth , 2022, Electrochimica Acta.

[8]  Chun–Chen Yang,et al.  Toward Practical High‐Energy and High‐Power Lithium Battery Anodes: Present and Future , 2022, Advanced science.

[9]  Zhenan Bao,et al.  Liquid electrolyte: The nexus of practical lithium metal batteries , 2022, Joule.

[10]  Jinqiu Zhou,et al.  Processing Robust Lithium Metal Anode for High-Security Batteries: A Minireview , 2022, Energy Storage Materials.

[11]  Xingping Zhou,et al.  A self-catalyzed strategy towards facile fabrication of bottlebrush polyester-based solid polymer electrolytes , 2022, Energy Storage Materials.

[12]  Christopher Y. Li,et al.  Multilayered Solid Polymer Electrolytes with Sacrificial Coating for Suppressing Lithium Dendrite Growth. , 2021, ACS applied materials & interfaces.

[13]  Rui Zhang,et al.  Dead lithium formation in lithium metal batteries: A phase field model , 2021, Journal of Energy Chemistry.

[14]  Yong Wang,et al.  In-Situ Generation of Fluorinated Polycarbonate Copolymer Solid Electrolytes for High-voltage Li-metal batteries , 2021, Energy Storage Materials.

[15]  Bingkun Guo,et al.  A composite PEO electrolyte with amide-based polymer matrix for suppressing lithium dendrite growth in all-solid-state lithium battery , 2021, Chinese Chemical Letters.

[16]  Xian‐Xiang Zeng,et al.  Revealing the Superiority of Fast Ion Conductor in Composite Electrolyte for Dendrite-Free Lithium-Metal Batteries. , 2021, ACS applied materials & interfaces.

[17]  Xiaocong Tian,et al.  A High-Voltage Hybrid Solid Electrolyte Based on Polycaprolactone for High-Performance all-Solid-State Flexible Lithium Batteries , 2021, ACS Applied Energy Materials.

[18]  Mao‐xiang Jing,et al.  Enhanced ionic conductivity and lithium dendrite suppression of polymer solid electrolytes by alumina nanorods and interfacial graphite modification. , 2021, Journal of colloid and interface science.

[19]  Xiangming He,et al.  Reviewing the current status and development of polymer electrolytes for solid-state lithium batteries , 2020 .

[20]  Feixiang Wu,et al.  Lithium metal anodes: Present and future , 2020, Journal of Energy Chemistry.

[21]  Mingtao Li,et al.  Bacterial Cellulose Composite Solid Polymer Electrolyte With High Tensile Strength and Lithium Dendrite Inhibition for Long Life Battery , 2020, ENERGY & ENVIRONMENTAL MATERIALS.

[22]  Xingping Zhou,et al.  Poly(ε-caprolactone)-block-poly(ethylene glycol)-block-poly(ε-caprolactone)-based hybrid polymer electrolyte for lithium metal batteries , 2020 .

[23]  Yutao Li,et al.  Designing of root-soil-like polyethylene oxide-based composite electrolyte for dendrite-free and long-cycling all-solid-state lithium metal batteries , 2020 .

[24]  V. Bocharova,et al.  Perspectives for Polymer Electrolytes: A View from Fundamentals of Ionic Conductivity , 2020 .

[25]  G. Cui,et al.  A Polymer-Reinforced SEI Layer Induced by a Cyclic Carbonate-Based Polymer Electrolyte Boosting 4.45 V LiCoO2 /Li Metal Batteries. , 2020, Small.

[26]  Darren H. S. Tan,et al.  From nanoscale interface characterization to sustainable energy storage using all-solid-state batteries , 2020, Nature Nanotechnology.

[27]  Chen‐Zi Zhao,et al.  Controlling Dendrite Growth in Solid-State Electrolytes , 2020 .

[28]  Jiayan Luo,et al.  Dendrites in Lithium Metal Anodes: Suppression, Regulation, and Elimination. , 2019, Accounts of chemical research.

[29]  Jinbao Xu,et al.  Studying the Ring-Opening Polymerization of 1,5-Dioxepan-2-one with Organocatalysts , 2019, Polymers.

[30]  M. Mahanthappa,et al.  Morphological Impact of Segment Dispersity in Lithium Salt-Doped Poly(styrene)/Poly(ethylene oxide) Triblock Polymers , 2019, Macromolecules.

[31]  Yang Shen,et al.  Self‐Suppression of Lithium Dendrite in All‐Solid‐State Lithium Metal Batteries with Poly(vinylidene difluoride)‐Based Solid Electrolytes , 2019, Advanced materials.

[32]  Qiang Zhang,et al.  Perspectives for restraining harsh lithium dendrite growth: Towards robust lithium metal anodes , 2018, Energy Storage Materials.

[33]  Jie Du,et al.  An effectively inhibiting lithium dendrite growth in-situ-polymerized gel polymer electrolyte , 2018, Electrochimica Acta.

[34]  Xiqian Yu,et al.  Dynamic evolution of cathode electrolyte interphase (CEI) on high voltage LiCoO2 cathode and its interaction with Li anode , 2018, Energy Storage Materials.

[35]  P. Notten,et al.  Temperature-dependent cycling performance and ageing mechanisms of C6/LiNi1/3Mn1/3Co1/3O2 batteries , 2018, Journal of Power Sources.

[36]  Chun-hua Chen,et al.  Polycarbonate-based polyurethane as a polymer electrolyte matrix for all-solid-state lithium batteries , 2018, Journal of Power Sources.

[37]  Bin Liu,et al.  Advancing Lithium Metal Batteries , 2018 .

[38]  A. Takahara,et al.  Effect of molecular mobility of pre-ordered phase on crystallization in microphase-separated lamellar morphology of strongly segregated crystalline-crystalline diblock copolymers , 2017 .

[39]  Y. Tominaga,et al.  Ion-Conductive Properties of a Polymer Electrolyte Based on Ethylene Carbonate/Ethylene Oxide Random Copolymer. , 2017, Macromolecular rapid communications.

[40]  B. McCloskey,et al.  Nonaqueous Polyelectrolyte Solutions as Liquid Electrolytes with High Lithium Ion Transference Number and Conductivity , 2017 .

[41]  Xinhong Zhou,et al.  Carbonate-linked poly(ethylene oxide) polymer electrolytes towards high performance solid state lithium batteries , 2017 .

[42]  Weifeng Wei,et al.  Solid polymer electrolyte membranes based on organic/inorganic nanocomposites with star-shaped structure for high performance lithium ion battery , 2016 .

[43]  Kenville E. Hendrickson,et al.  Stable Cycling of Lithium Metal Batteries Using High Transference Number Electrolytes , 2015 .

[44]  Michel Armand,et al.  A new class of Solvent-in-Salt electrolyte for high-energy rechargeable metallic lithium batteries , 2013, Nature Communications.

[45]  Jinbao Xu,et al.  Synthesis of Poly(ϵ‐caprolactone‐co‐methacrylic acid) Copolymer via Phosphazene‐Catalyzed Hybrid Copolymerization , 2013 .

[46]  John B Goodenough,et al.  The Li-ion rechargeable battery: a perspective. , 2013, Journal of the American Chemical Society.

[47]  Jinbao Xu,et al.  Hybrid Copolymerization of ε-Caprolactone and Methyl Methacrylate , 2012 .

[48]  A. Hexemer,et al.  Effect of Molecular Weight and Salt Concentration on Conductivity of Block Copolymer Electrolytes , 2009 .

[49]  C. Fonseca,et al.  Electrochemical properties of a biodegradable polymer electrolyte applied to a rechargeable lithium battery , 2006 .

[50]  D. Aurbach,et al.  X-ray photoelectron spectroscopy study of surface films formed on Li electrodes freshly prepared in alkyl carbonate solutions , 1999 .

[51]  Michel Armand,et al.  Polymer solid electrolytes - an overview , 1983 .