Quasi-Normal Modes and Exponential Energy Decay for the Kerr-de Sitter Black Hole

We provide a rigorous definition of quasi-normal modes for a rotating black hole. They are given by the poles of a certain meromorphic family of operators and agree with the heuristic definition in the physics literature. If the black hole rotates slowly enough, we show that these poles form a discrete subset of $${\mathbb C}$$ . As an application we prove that the local energy of linear waves in that background decays exponentially once orthogonality to the zero resonance is imposed.

[1]  M. Zworski,et al.  Resolvent Estimates for Normally Hyperbolic Trapped Sets , 2010, 1003.4640.

[2]  T. Ramond,et al.  Spectral projection, residue of the scattering amplitude, and Schrodinger group expansion for barrie , 2009, 0908.3444.

[3]  J. Combes,et al.  A class of analytic perturbations for one-body Schrödinger Hamiltonians , 1971 .

[4]  M. Tohaneanu Strichartz estimates on Kerr black hole backgrounds , 2009, 0910.1545.

[5]  B. Carter Hamilton-Jacobi and Schrodinger Separable Solutions of Einstein’s Equations , 1968 .

[6]  Resolvent estimates for a sum of tensor products with applications to the spectral theory of differential operators , 1983 .

[7]  Antonio S'a Barreto,et al.  Distribution of resonances for spherical black holes , 1997 .

[8]  On Pointwise Decay of Linear Waves on a Schwarzschild Black Hole Background , 2009, 0911.3179.

[9]  R. Melrose,et al.  Meromorphic extension of the resolvent on complete spaces with asymptotically constant negative curvature , 1987 .

[10]  Alain Bachelot,et al.  Les résonances d'un trou noir de Schwarzschild , 1993 .

[11]  Michael Taylor,et al.  Partial Differential Equations I: Basic Theory , 1996 .

[12]  Alain Bachelot Gravitational scattering of electromagnetic field by Schwarzschild black-hole , 1991 .

[13]  Resolvents and Martin boundaries of product spaces , 2000, math/0012009.

[14]  L. Hörmander The analysis of linear partial differential operators , 1990 .

[15]  Antonio S'a Barreto,et al.  Asymptotics of Solutions of the Wave Equation on de Sitter-Schwarzschild Space , 2008, 0811.2229.

[16]  L. Hörmander The Analysis of Linear Partial Differential Operators III , 2007 .

[17]  J. Bony,et al.  Decay and Non-Decay of the Local Energy for the Wave Equation on the De Sitter–Schwarzschild Metric , 2007, 0706.0350.

[18]  S. Yau,et al.  Decay of Solutions of the Wave Equation in the Kerr Geometry , 2008 .

[19]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[20]  M. Tohaneanu,et al.  A Local Energy Estimate on Kerr Black Hole Backgrounds , 2008, 0810.5766.

[21]  André Martinez Resonance Free Domains for Non Globally Analytic Potentials , 2002 .

[22]  R. Konoplya,et al.  Decay of a charged scalar and Dirac fields in the Kerr-Newman-de Sitter background , 2007, 0707.1890.

[23]  Vitor Cardoso,et al.  Quasinormal modes of black holes and black branes , 2009, 0905.2975.

[24]  D. Tataru Local decay of waves on asymptotically flat stationary space-times , 2009, 0910.5290.

[25]  Maciej Zworski,et al.  Complex scaling and the distribution of scattering poles , 1991 .

[26]  S. Yau,et al.  Decay of Solutions of the Wave Equation in the Kerr Geometry , 2005, gr-qc/0504047.

[27]  Wilhelm Schlag,et al.  A proof of Price's Law on Schwarzschild black hole manifolds for all angular momenta , 2009, 0908.4292.

[28]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[29]  Kostas D. Kokkotas,et al.  Quasi-Normal Modes of Stars and Black Holes , 1999, Living reviews in relativity.

[30]  S. Teukolsky ROTATING BLACK HOLES: SEPARABLE WAVE EQUATIONS FOR GRAVITATIONAL AND ELECTROMAGNETIC PERTURBATIONS. , 1972 .

[31]  K. Datchev Distribution of resonances for manifolds with hyperbolic ends , 2010 .

[32]  J. Sjöstrand,et al.  Semiclassical resonances generated by a closed trajectory of hyperbolic type , 1987 .

[33]  Scattering of a Klein-Gordon particle by a black hole , 1984 .

[34]  I. Rodnianski,et al.  Lectures on black holes and linear waves , 2008, 0811.0354.