Xenon as a Complex Ligand: The Tetra Xenono Gold(II) Cation in AuXe4

The first metal-xenon compound with direct gold-xenon bonds is achieved by reduction of AuF 3 with elemental xenon. The square planar AuXe 4 2+ cation is established by a single-crystal structure determination, with a gold-xenon bond length of approximately 274 picometers. The bonding between gold and xenon is of the σ donor type, resulting in a charge of approximately 0.4 per xenon atom.

[1]  B. H. Weiller,et al.  Time-resolved IR spectroscopy in liquid rare gases: direct rate measurement of an intermolecular alkane carbon-hydrogen oxidative addition reaction , 1989 .

[2]  J. Yeston,et al.  The Effect of Alkane Structure on Rates of Photoinduced C−H Bond Activation by Cp*Rh(CO)2 in Liquid Rare Gas Media: An Infrared Flash Kinetics Study , 1999 .

[3]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[4]  Michael C. L. Gerry,et al.  Noble Gas−Metal Chemical Bonds. Microwave Spectra, Geometries, and Nuclear Quadrupole Coupling Constants of Ar−AuCl and Kr−AuCl , 2000 .

[5]  P. Pyykkoe Predicted Chemical Bonds between Rare Gases and Au , 1995 .

[6]  Pekka Pyykkö,et al.  Relativity and the periodic system of elements , 1979 .

[7]  K. Seppelt,et al.  Preparation and Structure of F3As–Au+SbF6–, the Structures of Au(CO)2+ and Au(PF3)2+ , 2000 .

[8]  C. Moore,et al.  Evidence for the Formation of Free 16-Electron Species Rather than Solvate Complexes in the Ultraviolet Irradiation of CpCo(CO)2 in Liquefied Noble Gas Solvents , 1995 .

[9]  K. Seppelt,et al.  The Xe 2+ Ion—Preparation and Structure , 1997 .

[10]  B. H. Weiller,et al.  IR Flash Kinetic Spectroscopy of C-H Bond Activation of Cyclohexane-d0 and -d12 by Cp*Rh(CO)2 in Liquid Rare Gases: Kinetics, Thermodynamics, and Unusual Isotope Effect , 1994 .

[11]  S. H. Elder,et al.  SYNTHESIS OF AU(II) FLUORO COMPLEXES AND THEIR STRUCTURAL AND MAGNETIC PROPERTIES , 1997 .

[12]  E. Weitz,et al.  Rare gas-metal carbonyl complexes: bonding of rare gas atoms to the Group VIB pentacarbonyls , 1992 .

[13]  B. H. Weiller,et al.  Organometallic CO substitution kinetics in liquid Xe by fast time-resolved IR spectroscopy , 1993 .

[14]  G. Frenking,et al.  Structure and bonding of the noble gas - metal carbonyl complexes M(CO)5-Ng (M=Cr, Mo, W and Ng=Ar, Kr, Xe). , 1997 .

[15]  M. Poliakoff,et al.  Remarkable Stability of (η5-C5H5)Re(CO)2L (L = n-Heptane, Xe, and Kr): A Time-Resolved Infrared Spectroscopic Study of (η5-C5H5)Re(CO)3 in Conventional and Supercritical Fluid Solution , 1997 .

[16]  Neil Bartlett,et al.  Concerning the nature of XePtF6 , 2000 .

[17]  C. Moore,et al.  Activation of the C-H Bonds in Neopentane and Neopentane-d12 by (.eta.5-C5(CH3)5)Rh(CO)2: Spectroscopic and Temporal Resolution of Rhodium-Krypton and Rhodium-Alkane Complex Intermediates , 1994 .

[18]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[19]  R. Perutz,et al.  EPR spectra of KrMn(CO)5 and KrFe(CO)5+ in a krypton matrix , 1984 .