Donor–acceptor block copolymers for photovoltaic applications

Extensive research activities in polymer synthesis and device engineering have been devoted to the development of donor–acceptor (D–A) bulk heterojunction solar cells in the last years. In such devices, several photophysical processes occur all of which have to be optimized for efficient operation. First, excitons created upon light absorption need to reach the D/A interface within their exciton diffusion length (10– 20 nm), where they may dissociate into holes and electrons. Subsequent charge transport and finally charge collection at the electrodes can occur, given that co-continous pathways of donor and acceptor domains are provided. Owing to the small exciton diffusion lengths and the required optical absorption length of 100–200 nm, vertically aligned pathways with a high aspect ratio of either phase should percolate through the film. The morphologies resulting from this ideal situation resemble those of vertically oriented microphase separated block copolymer thin films, and hence suggest the importance of D–A block copolymers for organic photovoltaics. Furthermore, the covalent bond between the donor and acceptor blocks is not only desired to improve morphology control, but also to enhance long term stability of the device. The potential of block copolymers with electronic functionality to microphase separate into well-defined microstructures with several tens of nanometers in size thus addresses the morphological requirements mentioned above. This article gives an overview of donor–acceptor block copolymers and summarises recent developments of this field.

[1]  Edward Van Keuren,et al.  Endohedral fullerenes for organic photovoltaic devices. , 2009, Nature materials.

[2]  Jae Kwan Lee,et al.  Well-defined donor–acceptor rod–coil diblock copolymers based on P3HT containing C60: the morphology and role as a surfactant in bulk-heterojunction solar cells , 2009 .

[3]  Sridhar Rajaram,et al.  Effect of Addition of a Diblock Copolymer on Blend Morphology and Performance of Poly(3-hexylthiophene):Perylene Diimide Solar Cells , 2009 .

[4]  J. Hummelen,et al.  Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions , 1995, Science.

[5]  M. Thelakkat,et al.  Donor–Acceptor Block Copolymers with Nanoscale Morphology for Photovoltaic Applications , 2009 .

[6]  Christoph J. Brabec,et al.  Influence of the molecular weight of poly(3-hexylthiophene) on the performance of bulk heterojunction solar cells , 2005 .

[7]  P. E. Keivanidis,et al.  Improved Performance of Perylene-Based Photovoltaic Cells Using Polyisocyanopeptide Arrays , 2009 .

[8]  Ulrich B Wiesner,et al.  Semiconductor dendritic-linear block copolymers by nitroxide mediated radical polymerization. , 2009, Macromolecular rapid communications.

[9]  Yang Yang,et al.  High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends , 2005 .

[10]  M. Thelakkat,et al.  Electron‐Conducting Block Copolymers: Morphological, Optical, and Electronic Properties , 2008 .

[11]  T. Kowalewski,et al.  Conducting Regioregular Polythiophene Block Copolymer Nanofibrils Synthesized by Reversible Addition Fragmentation Chain Transfer Polymerization (RAFT) and Nitroxide Mediated Polymerization (NMP) , 2007 .

[12]  A. Chiche,et al.  Charge separation at self-assembled nanostructured bulk interface in block copolymers. , 2006, Angewandte Chemie.

[13]  Xiong Gong,et al.  Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology , 2005 .

[14]  H. Cramail,et al.  Synthesis of Donor-Acceptor Multiblock Copolymers Incorporating Fullerene Backbone Repeat Units , 2010 .

[15]  Martijn Lenes,et al.  Fullerene Bisadducts for Enhanced Open‐Circuit Voltages and Efficiencies in Polymer Solar Cells , 2008 .

[16]  Michael Sommer,et al.  n-type organic field effect transistors from perylene bisimide block copolymers and homopolymers , 2008 .

[17]  Cheng Zhang,et al.  Photovoltaic enhancement of organic solar cells by a bridged donor-acceptor block copolymer approach , 2007 .

[18]  Yongfang Li,et al.  Indene-C(60) bisadduct: a new acceptor for high-performance polymer solar cells. , 2010, Journal of the American Chemical Society.

[19]  Heinrich M. Jaeger,et al.  Overcoming Interfacial Interactions with Electric Fields , 2000 .

[20]  S. Barlow,et al.  Charge photogeneration in polythiophene-perylene diimide blend films. , 2009, Chemical communications.

[21]  R. Friend,et al.  Low-temperature control of nanoscale morphology for high performance polymer photovoltaics. , 2008, Nano letters.

[22]  Chain‐Shu Hsu,et al.  Synthesis of conjugated polymers for organic solar cell applications. , 2009, Chemical reviews.

[23]  R. D. Mccullough,et al.  In‐Situ End‐Group Functionalization of Regioregular Poly(3‐alkylthiophene) Using the Grignard Metathesis Polymerization Method , 2004 .

[24]  I. Samuel,et al.  Exciton Diffusion Measurements in Poly(3‐hexylthiophene) , 2008 .

[25]  T. Emrick,et al.  Morphology control of a polythiophene–fullerene bulk heterojunction for enhancement of the high-temperature stability of solar cell performance by a new donor–acceptor diblock copolymer , 2010, Nanotechnology.

[26]  T. P. Russell,et al.  Solvent‐Induced Ordering in Thin Film Diblock Copolymer/Homopolymer Mixtures , 2004 .

[27]  Katsuhiko Ariga,et al.  Block-copolymer-nanowires with nanosized domain segregation and high charge mobilities as stacked p/n heterojunction arrays for repeatable photocurrent switching. , 2009, Journal of the American Chemical Society.

[28]  T. Emrick,et al.  Donor−Acceptor Poly(thiophene-block-perylene diimide) Copolymers: Synthesis and Solar Cell Fabrication , 2009 .

[29]  Mm Martijn Wienk,et al.  Narrow‐Bandgap Diketo‐Pyrrolo‐Pyrrole Polymer Solar Cells: The Effect of Processing on the Performance , 2008 .

[30]  Brian A. Gregg,et al.  Excitonic Solar Cells , 2003 .

[31]  Klaus Meerholz,et al.  Morphology Control in Solution‐Processed Bulk‐Heterojunction Solar Cell Mixtures , 2009 .

[32]  C. Brabec,et al.  Plastic Solar Cells , 2001 .

[33]  Gang Li,et al.  For the Bright Future—Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4% , 2010, Advanced materials.

[34]  Jae Wook Lee,et al.  Effects of functional groups at perylene diimide derivatives on organic photovoltaic device application , 2006 .

[35]  Jan C Hummelen,et al.  Accurate measurement of the exciton diffusion length in a conjugated polymer using a heterostructure with a side-chain cross-linked fullerene layer. , 2005, The journal of physical chemistry. A.

[36]  N. Greenham,et al.  Monte Carlo modeling of geminate recombination in polymer-polymer photovoltaic devices. , 2008, The Journal of chemical physics.

[37]  Chun-Wei Chen,et al.  Investigation of nanoscale morphological changes in organic photovoltaics during solvent vapor annealing , 2008 .

[38]  R. Friend,et al.  Crystal network formation in organic solar cells , 2000 .

[39]  Zhenan Bao,et al.  Soluble and processable regioregular poly(3‐hexylthiophene) for thin film field‐effect transistor applications with high mobility , 1996 .

[40]  Mukundan Thelakkat,et al.  Swallow-tail substituted liquid crystalline perylene bisimides: synthesis and thermotropic properties. , 2009, Journal of the American Chemical Society.

[41]  S. Haque,et al.  Charge separation and recombination in self-organizing nanostructured donor–acceptor block copolymer films , 2009 .

[42]  Michael D. McGehee,et al.  Photovoltaic cells made from conjugated polymers infiltrated into mesoporous titania , 2003 .

[43]  M. Thelakkat,et al.  Nanostructures of n-Type Organic Semiconductor in a p-Type Matrix via Self-Assembly of Block Copolymers , 2004 .

[44]  A. Chiche,et al.  Controlled solvent vapour annealing for polymer electronics , 2009 .

[45]  Yang Yang,et al.  Polymer solar cells with enhanced open-circuit voltage and efficiency , 2009 .

[46]  A. Müller,et al.  Crystallization and morphology of biodegradable or biostable single and double crystalline block copolymers , 2009 .

[47]  G. Hadziioannou,et al.  Self-Assembling of Novel Fullerene-Grafted Donor–Acceptor Rod−Coil Block Copolymers , 2008 .

[48]  Richard H. Friend,et al.  Electron Trapping in Dye/Polymer Blend Photovoltaic Cells , 2000 .

[49]  U. Steiner,et al.  Organic Field Effect Transistors from Triarylamine Side-chain Polymers , 2010 .

[50]  Venkat Ganesan,et al.  Correlations between Morphologies and Photovoltaic Properties of Rod−Coil Block Copolymers , 2010 .

[51]  E. Harth,et al.  New polymer synthesis by nitroxide mediated living radical polymerizations. , 2001, Chemical reviews.

[52]  Fosong Wang,et al.  Monodisperse co-oligomer approach toward nanostructured films with alternating donor-acceptor lamellae. , 2009, Journal of the American Chemical Society.

[53]  Jin Young Kim,et al.  Processing additives for improved efficiency from bulk heterojunction solar cells. , 2008, Journal of the American Chemical Society.

[54]  L. Balk,et al.  Conjugated triblock copolymers containing both electron-donor and electron-acceptor blocks , 2006 .

[55]  F. Krebs,et al.  Low band gap polymers for organic photovoltaics , 2007 .

[56]  Yang Yang,et al.  Synthesis, characterization, and photovoltaic properties of a low band gap polymer based on silole-containing polythiophenes and 2,1,3-benzothiadiazole. , 2008, Journal of the American Chemical Society.

[57]  P. E. Keivanidis,et al.  Intermolecular Interactions of Perylene diimides in Photovoltaic Blends of Fluorene Copolymers: Disorder Effects on Photophysical Properties, Film Morphology and Device Efficiency , 2008 .

[58]  A J Heeger,et al.  Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. , 2007, Nature materials.

[59]  Neil C. Greenham,et al.  Conjugated‐Polymer Blends for Optoelectronics , 2009 .

[60]  Richard A. Register,et al.  Shear‐Induced Alignment in Thin Films of Spherical Nanodomains , 2005 .

[61]  G. Hadziioannou,et al.  Semiconducting Diblock Copolymers Synthesized by Means of Controlled Radical Polymerization Techniques , 2000 .

[62]  H. Snaith,et al.  Block copolymer morphologies in dye-sensitized solar cells: probing the photovoltaic structure-function relation. , 2009, Nano letters.

[63]  D. Pai,et al.  Comparison of the drift mobility measured under transient and steady-state conditions in a prototypical hopping system , 1986 .

[64]  Jenny Nelson,et al.  Morphology evolution via self-organization and lateral and vertical diffusion in polymer:fullerene solar cell blends. , 2008, Nature materials.

[65]  M. Thelakkat,et al.  Crystalline-crystalline donor-acceptor block copolymers. , 2008, Angewandte Chemie.

[66]  R. Segalman,et al.  The relationship between morphology and performance of donor–acceptor rod–coil block copolymer solar cells , 2009 .

[67]  Jean M. J. Fréchet,et al.  Amphiphilic Diblock Copolymer Compatibilizers and Their Effect on the Morphology and Performance of Polythiophene:Fullerene Solar Cells , 2006 .

[68]  G. Hadziioannou,et al.  Donor-acceptor diblock copolymers based on PPV and C-60: Synthesis, thermal properties, and morphology , 2004 .

[69]  T. Emrick,et al.  Synthesis and photophysical property of well-defined donor–acceptor diblock copolymer based on regioregular poly(3-hexylthiophene) and fullerene , 2009 .

[70]  G. Garcia‐Belmonte,et al.  Determination of charge carrier mobility of hole transporting polytriarylamine-based diodes , 2010 .

[71]  M. Thelakkat,et al.  Microphase‐Separated Donor–Acceptor Diblock Copolymers: Influence of HOMO Energy Levels and Morphology on Polymer Solar Cells , 2007 .

[72]  S. Shaheen,et al.  Organic Two-Layer Light-Emitting Diodes Based on High-Tg Hole-Transporting Polymers with Different Redox Potentials , 1999 .

[73]  Nigel Clarke,et al.  Predicting structure and property relations in polymeric photovoltaic devices , 2006 .

[74]  Niyazi Serdar Sariciftci,et al.  Morphology of polymer/fullerene bulk heterojunction solar cells , 2006 .

[75]  U. Steiner,et al.  Influence of molecular weight on the solar cell performance of double-crystalline donor-acceptor block copolymers , 2009 .

[76]  Rui Li,et al.  Design, Synthesis, and Characterization of a −Donor−Bridge−Acceptor−Bridge- Type Block Copolymer via Alkoxy- and Sulfone- Derivatized Poly(phenylenevinylenes) , 2006 .

[77]  M. Thelakkat,et al.  Synthesis, characterization and application of donor-acceptor block copolymers in nanostructured bulk heterojunction solar cells , 2006 .

[78]  Maurizio Prato,et al.  [60]Fullerene chemistry for materials science applications , 1997 .