Methylammonium lead triiodide perovskite solar cells: A new paradigm in photovoltaics

Perovskite solar cells based on methylammonium lead triiodide witnessed unprecedented progress after the seminal work of Miyasaka and co-workers in 2009, where they employed perovskite nanocrystals as sensitizers in a dye-sensitized solar-cell configuration. After key breakthroughs with solid-state perovskite photovoltaics in 2012, research efforts have grown exponentially, and several groups have demonstrated that the perovskite concomitantly acts as a light absorber and an electron and hole transporter in both mesoscopic networks and solid polycrystalline layers, where the perovskite layer can be deposited using a broad range of techniques. The methylammonium lead triiodide perovskite bandgap has been tuned by substituting various cations and anions. By optimizing the crystalline quality of the perovskite absorber and film formation by solvent engineering, a remarkable power-conversion efficiency of over 20% has been demonstrated, highlighting the exceptional photovoltaic properties of perovskite materials. The high efficiencies are due to a combination of long carrier lifetimes, substantial charge-carrier mobilities, and remarkably benign electronic defects. This issue highlights various deposition methods of the perovskite absorber, such as single-step, sequential, dual-source sublimation, and solution and sublimation processes, as well as hole-transporting-free and tandem perovskite solar cells.

[1]  Sang Il Seok,et al.  Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. , 2014, Nature materials.

[2]  Sang Il Seok,et al.  High-performance photovoltaic perovskite layers fabricated through intramolecular exchange , 2015, Science.

[3]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[4]  Mohammad Khaja Nazeeruddin,et al.  Organohalide lead perovskites for photovoltaic applications , 2014 .

[5]  Laura M. Herz,et al.  Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber , 2013, Science.

[6]  Yaming Yu,et al.  NH2CH═NH2PbI3: An Alternative Organolead Iodide Perovskite Sensitizer for Mesoscopic Solar Cells , 2014 .

[7]  Tonu Pullerits,et al.  Thermally Activated Exciton Dissociation and Recombination Control the Carrier Dynamics in Organometal Halide Perovskite. , 2014, The journal of physical chemistry letters.

[8]  David B. Mitzi,et al.  Thin-Film Deposition of Organic−Inorganic Hybrid Materials , 2001 .

[9]  N. Park,et al.  Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9% , 2012, Scientific Reports.

[10]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[11]  H. Bolink,et al.  Trap‐Assisted Non‐Radiative Recombination in Organic–Inorganic Perovskite Solar Cells , 2015, Advanced materials.

[12]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[13]  Yossi Rosenwaks,et al.  The electronic structure of metal oxide/organo metal halide perovskite junctions in perovskite based solar cells , 2015, Scientific Reports.

[14]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[15]  Tae Kyu Ahn,et al.  Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency , 2015 .

[16]  Sergei Tretiak,et al.  High-efficiency solution-processed perovskite solar cells with millimeter-scale grains , 2015, Science.

[17]  Nam-Gyu Park,et al.  Organometal Perovskite Light Absorbers Toward a 20% Efficiency Low-Cost Solid-State Mesoscopic Solar Cell , 2013 .

[18]  M. Grätzel,et al.  Sequential deposition as a route to high-performance perovskite-sensitized solar cells , 2013, Nature.

[19]  Henry J. Snaith,et al.  Efficient planar heterojunction perovskite solar cells by vapour deposition , 2013, Nature.

[20]  Young Chan Kim,et al.  Compositional engineering of perovskite materials for high-performance solar cells , 2015, Nature.

[21]  Peng Gao,et al.  Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. , 2012, Journal of the American Chemical Society.

[22]  Jean-Pierre Wolf,et al.  Organometal halide perovskite solar cell materials rationalized: ultrafast charge generation, high and microsecond-long balanced mobilities, and slow recombination. , 2014, Journal of the American Chemical Society.

[23]  M. Grätzel,et al.  Direct monitoring of ultrafast electron and hole dynamics in perovskite solar cells. , 2015, Physical chemistry chemical physics : PCCP.

[24]  Fang Wang,et al.  A highly pi-stacked organic semiconductor for field-effect transistors based on linearly condensed pentathienoacene. , 2005, Journal of the American Chemical Society.

[25]  J. Noh,et al.  Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. , 2013, Nano letters.

[26]  Mohammad Khaja Nazeeruddin,et al.  Perovskite as light harvester: a game changer in photovoltaics. , 2014, Angewandte Chemie.

[27]  Juan Bisquert,et al.  Capacitive Dark Currents, Hysteresis, and Electrode Polarization in Lead Halide Perovskite Solar Cells. , 2015, The journal of physical chemistry letters.

[28]  Qingfeng Dong,et al.  Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals , 2015, Science.

[29]  Arie Zaban,et al.  Extremely Slow Photoconductivity Response of CH3NH3PbI3 Perovskites Suggesting Structural Changes under Working Conditions. , 2014, The journal of physical chemistry letters.

[30]  Yongbo Yuan,et al.  Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells , 2014, Nature Communications.

[31]  Henk J. Bolink,et al.  Perovskite solar cells employing organic charge-transport layers , 2013, Nature Photonics.

[32]  Peng Gao,et al.  Mixed-organic-cation perovskite photovoltaics for enhanced solar-light harvesting. , 2014, Angewandte Chemie.

[33]  Qi Chen,et al.  Planar heterojunction perovskite solar cells via vapor-assisted solution process. , 2014, Journal of the American Chemical Society.