Density Based Subspace Clustering over Dynamic Data
暂无分享,去创建一个
Hans-Peter Kriegel | Peer Kröger | Arthur Zimek | Eirini Ntoutsi | A. Zimek | H. Kriegel | Eirini Ntoutsi | Peer Kröger | Arthur Zimek
[1] Hans-Peter Kriegel,et al. Incremental OPTICS: Efficient Computation of Updates in a Hierarchical Cluster Ordering , 2003, DaWaK.
[2] Bernhard Liebl,et al. Very high compliance in an expanded MS-MS-based newborn screening program despite written parental consent. , 2002, Preventive medicine.
[3] Dimitrios Gunopulos,et al. Automatic subspace clustering of high dimensional data for data mining applications , 1998, SIGMOD '98.
[4] Hans-Peter Kriegel,et al. OPTICS: ordering points to identify the clustering structure , 1999, SIGMOD '99.
[5] Johannes Gehrke,et al. Querying and mining data streams: you only get one look a tutorial , 2002, SIGMOD '02.
[6] Jing Gao,et al. An Incremental Data Stream Clustering Algorithm Based on Dense Units Detection , 2005, PAKDD.
[7] Johannes Gehrke,et al. DEMON: mining and monitoring evolving data , 2000, Proceedings of 16th International Conference on Data Engineering (Cat. No.00CB37073).
[8] Hans-Peter Kriegel,et al. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.
[9] Hans-Peter Kriegel,et al. Incremental Clustering for Mining in a Data Warehousing Environment , 1998, VLDB.
[10] Tian Zhang,et al. BIRCH: an efficient data clustering method for very large databases , 1996, SIGMOD '96.
[11] Aoying Zhou,et al. Density-Based Clustering over an Evolving Data Stream with Noise , 2006, SDM.
[12] Philip S. Yu,et al. A Framework for Clustering Evolving Data Streams , 2003, VLDB.
[13] Yen-Jen Oyang,et al. An Incremental Hierarchical Data Clustering Algorithm Based on Gravity Theory , 2002, PAKDD.
[14] Sudipto Guha,et al. Clustering Data Streams: Theory and Practice , 2003, IEEE Trans. Knowl. Data Eng..
[15] Rajeev Motwani,et al. Incremental Clustering and Dynamic Information Retrieval , 2004, SIAM J. Comput..
[16] Christian Böhm,et al. Density connected clustering with local subspace preferences , 2004, Fourth IEEE International Conference on Data Mining (ICDM'04).
[17] Myra Spiliopoulou,et al. MONIC: modeling and monitoring cluster transitions , 2006, KDD '06.
[18] Anil K. Jain,et al. Data clustering: a review , 1999, CSUR.
[19] A. Zimek,et al. Towards subspace clustering on dynamic data: an incremental version of PreDeCon , 2010, StreamKDD '10.
[20] Philip S. Yu,et al. A Framework for Projected Clustering of High Dimensional Data Streams , 2004, VLDB.
[21] Charu C. Aggarwal,et al. On change diagnosis in evolving data streams , 2005, IEEE Transactions on Knowledge and Data Engineering.
[22] Hans-Peter Kriegel,et al. Clustering high-dimensional data: A survey on subspace clustering, pattern-based clustering, and correlation clustering , 2009, TKDD.