The A-minor motifs in the decoding recognition process.

The formation of A-minor motifs, mediated by adenines binding into the shallow/minor groove of stacked and helical Watson-Crick base pairs, is described. The conformations of the bacterial ribosomal decoding A site in various crystal structures are reviewed. The adenines A1492 and A1493 of the A site are seen either tucked in within the internal loop or bulging out and poised for interaction. This dynamic equilibrium contributes to the decoding process of the codon:anticodon base pairings. Aminoglycoside antibiotics lock the conformation of the A site in a single state with bulged-out adenines and thereby disrupt regulation of the decoding process.

[1]  Eric Westhof,et al.  Crystal structures of complexes between aminoglycosides and decoding A site oligonucleotides: role of the number of rings and positive charges in the specific binding leading to miscoding , 2005, Nucleic acids research.

[2]  E. Westhof,et al.  Analysis of RNA motifs. , 2003, Current opinion in structural biology.

[3]  H. Noller 10 Evolution of Ribosomes and Translation from an RNA World , 2006 .

[4]  V. Ramakrishnan,et al.  Selection of tRNA by the Ribosome Requires a Transition from an Open to a Closed Form , 2002, Cell.

[5]  E. Westhof,et al.  Two conformational states in the crystal structure of the Homo sapiens cytoplasmic ribosomal decoding A site , 2006, Nucleic acids research.

[6]  Thomas A. Steitz,et al.  RNA tertiary interactions in the large ribosomal subunit: The A-minor motif , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[7]  T. Steitz,et al.  The roles of ribosomal proteins in the structure assembly, and evolution of the large ribosomal subunit. , 2004, Journal of molecular biology.

[8]  E Westhof,et al.  Crystal structure of paromomycin docked into the eubacterial ribosomal decoding A site. , 2001, Structure.

[9]  Harry F Noller,et al.  RNA Structure: Reading the Ribosome , 2005, Science.

[10]  J. Feigon,et al.  Site-directed spin labeling studies reveal solution conformational changes in a GAAA tetraloop receptor upon Mg(2+)-dependent docking of a GAAA tetraloop. , 2005, Journal of molecular biology.

[11]  H. Noller,et al.  Rapid chemical probing of conformation in 16 S ribosomal RNA and 30 S ribosomal subunits using primer extension. , 1986, Journal of molecular biology.

[12]  Makio Tamura,et al.  Sequence and structural conservation in RNA ribose zippers. , 2002, Journal of molecular biology.

[13]  V. Ramakrishnan,et al.  Insights into the decoding mechanism from recent ribosome structures. , 2003, Trends in biochemical sciences.

[14]  Eric Westhof,et al.  Crystal structure of geneticin bound to a bacterial 16S ribosomal RNA A site oligonucleotide. , 2003, Journal of molecular biology.

[15]  E Westhof,et al.  Computer modeling from solution data of spinach chloroplast and of Xenopus laevis somatic and oocyte 5 S rRNAs. , 1989, Journal of molecular biology.

[16]  L. Scott,et al.  RNA helical packing in solution: NMR structure of a 30 kDa GAAA tetraloop-receptor complex. , 2005, Journal of molecular biology.

[17]  E. Westhof,et al.  Modelling of the three-dimensional architecture of group I catalytic introns based on comparative sequence analysis. , 1990, Journal of molecular biology.

[18]  R. Gutell,et al.  A story: unpaired adenosine bases in ribosomal RNAs. , 2000, Journal of molecular biology.

[19]  Jennifer A. Doudna,et al.  A universal mode of helix packing in RNA , 2001, Nature Structural Biology.

[20]  V. Ramakrishnan,et al.  Ribosome Structure and the Mechanism of Translation , 2002, Cell.

[21]  F. Michel,et al.  Frequent use of the same tertiary motif by self‐folding RNAs. , 1995, The EMBO journal.

[22]  Eric Westhof,et al.  RNA as a Drug Target: The Case of Aminoglycosides , 2003, Chembiochem : a European journal of chemical biology.

[23]  K. Nierhaus,et al.  Ribosomal Decoding Processes at Codons in the A or P Sites Depend Differently on 2′-OH Groups (*) , 1995, The Journal of Biological Chemistry.

[24]  R. Gutell,et al.  Comparative anatomy of 16-S-like ribosomal RNA. , 1985, Progress in nucleic acid research and molecular biology.

[25]  J. Holland,et al.  Denatured DNA as a direct template for in vitro protein synthesis. , 1965, Proceedings of the National Academy of Sciences of the United States of America.

[26]  E. Westhof,et al.  Crystal structure of a complex between the aminoglycoside tobramycin and an oligonucleotide containing the ribosomal decoding a site. , 2002, Chemistry & biology.

[27]  J. Feigon,et al.  Solution structure of a GAAA tetraloop receptor RNA , 1997, The EMBO journal.

[28]  V. Ramakrishnan,et al.  First published online as a Review in Advance on February 25, 2005 STRUCTURAL INSIGHTS INTO TRANSLATIONAL , 2022 .

[29]  V. Ramakrishnan,et al.  Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics , 2000, Nature.

[30]  V. Ramakrishnan,et al.  Recognition of Cognate Transfer RNA by the 30S Ribosomal Subunit , 2001, Science.

[31]  J. Doudna,et al.  Specificity of RNA–RNA helix recognition , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[32]  T. Hermann,et al.  Monitoring molecular recognition of the ribosomal decoding site. , 2004, Angewandte Chemie.

[33]  J. Holton,et al.  Structures of the Bacterial Ribosome at 3.5 Å Resolution , 2005, Science.

[34]  T. Steitz,et al.  The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. , 2000, Science.

[35]  K. Flaherty,et al.  Model for an RNA tertiary interaction from the structure of an intermolecular complex between a GAAA tetraloop and an RNA helix , 1994, Nature.

[36]  C R Woese,et al.  Architecture of ribosomal RNA: constraints on the sequence of "tetra-loops". , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[37]  C. Kundrot,et al.  Crystal Structure of a Group I Ribozyme Domain: Principles of RNA Packing , 1996, Science.

[38]  E. Westhof,et al.  Molecular recognition of aminoglycoside antibiotics by ribosomal RNA and resistance enzymes: an analysis of x-ray crystal structures. , 2003, Biopolymers.

[39]  E. Westhof,et al.  An extended structural signature for the tRNA anticodon loop. , 2001, RNA.

[40]  E. Westhof,et al.  Geometric nomenclature and classification of RNA base pairs. , 2001, RNA.

[41]  C. Vonrhein,et al.  Structure of the 30S ribosomal subunit , 2000, Nature.

[42]  H. Noller,et al.  Identification of 2'-hydroxyl groups required for interaction of a tRNA anticodon stem-loop region with the ribosome. , 1997, RNA.