Convergence Analysis for Rectangular Matrix Completion Using Burer-Monteiro Factorization and Gradient Descent

We address the rectangular matrix completion problem by lifting the unknown matrix to a positive semidefinite matrix in higher dimension, and optimizing a nonconvex objective over the semidefinite factor using a simple gradient descent scheme. With $O( \mu r^2 \kappa^2 n \max(\mu, \log n))$ random observations of a $n_1 \times n_2$ $\mu$-incoherent matrix of rank $r$ and condition number $\kappa$, where $n = \max(n_1, n_2)$, the algorithm linearly converges to the global optimum with high probability.

[1]  Renato D. C. Monteiro,et al.  A nonlinear programming algorithm for solving semidefinite programs via low-rank factorization , 2003, Math. Program..

[2]  Tommi S. Jaakkola,et al.  Maximum-Margin Matrix Factorization , 2004, NIPS.

[3]  Adi Shraibman,et al.  Rank, Trace-Norm and Max-Norm , 2005, COLT.

[4]  Uriel Feige,et al.  Spectral techniques applied to sparse random graphs , 2005, Random Struct. Algorithms.

[5]  Michael I. Jordan,et al.  A Direct Formulation for Sparse Pca Using Semidefinite Programming , 2004, SIAM Rev..

[6]  Emmanuel J. Candès,et al.  A Singular Value Thresholding Algorithm for Matrix Completion , 2008, SIAM J. Optim..

[7]  Ruslan Salakhutdinov,et al.  Practical Large-Scale Optimization for Max-norm Regularization , 2010, NIPS.

[8]  Pablo A. Parrilo,et al.  Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization , 2007, SIAM Rev..

[9]  Ryota Tomioka,et al.  Estimation of low-rank tensors via convex optimization , 2010, 1010.0789.

[10]  Andrea Montanari,et al.  Matrix completion from a few entries , 2009, 2009 IEEE International Symposium on Information Theory.

[11]  Inderjit S. Dhillon,et al.  Guaranteed Rank Minimization via Singular Value Projection , 2009, NIPS.

[12]  Emmanuel J. Candès,et al.  The Power of Convex Relaxation: Near-Optimal Matrix Completion , 2009, IEEE Transactions on Information Theory.

[13]  Emmanuel J. Candès,et al.  PhaseLift: Exact and Stable Signal Recovery from Magnitude Measurements via Convex Programming , 2011, ArXiv.

[14]  Nathan Srebro,et al.  Concentration-Based Guarantees for Low-Rank Matrix Reconstruction , 2011, COLT.

[15]  Pierre-Antoine Absil,et al.  RTRMC: A Riemannian trust-region method for low-rank matrix completion , 2011, NIPS.

[16]  Nathan Halko,et al.  Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions , 2009, SIAM Rev..

[17]  Emmanuel J. Candès,et al.  Exact Matrix Completion via Convex Optimization , 2008, Found. Comput. Math..

[18]  Raghunandan H. Keshavan Efficient algorithms for collaborative filtering , 2012 .

[19]  Martin J. Wainwright,et al.  Restricted strong convexity and weighted matrix completion: Optimal bounds with noise , 2010, J. Mach. Learn. Res..

[20]  Bart Vandereycken,et al.  Low-Rank Matrix Completion by Riemannian Optimization , 2013, SIAM J. Optim..

[21]  Bamdev Mishra,et al.  Low-Rank Optimization with Trace Norm Penalty , 2011, SIAM J. Optim..

[22]  Prateek Jain,et al.  Low-rank matrix completion using alternating minimization , 2012, STOC '13.

[23]  Bamdev Mishra,et al.  Manopt, a matlab toolbox for optimization on manifolds , 2013, J. Mach. Learn. Res..

[24]  Xiaodong Li,et al.  Solving Quadratic Equations via PhaseLift When There Are About as Many Equations as Unknowns , 2012, Found. Comput. Math..

[25]  Mary Wootters,et al.  Fast matrix completion without the condition number , 2014, COLT.

[26]  Moritz Hardt,et al.  Understanding Alternating Minimization for Matrix Completion , 2013, 2014 IEEE 55th Annual Symposium on Foundations of Computer Science.

[27]  Zhi-Quan Luo,et al.  Guaranteed Matrix Completion via Non-Convex Factorization , 2014, IEEE Transactions on Information Theory.

[28]  John D. Lafferty,et al.  A Convergent Gradient Descent Algorithm for Rank Minimization and Semidefinite Programming from Random Linear Measurements , 2015, NIPS.

[29]  Yudong Chen,et al.  Incoherence-Optimal Matrix Completion , 2013, IEEE Transactions on Information Theory.

[30]  Zhaoran Wang,et al.  A Nonconvex Optimization Framework for Low Rank Matrix Estimation , 2015, NIPS.

[31]  Xiaodong Li,et al.  Phase Retrieval via Wirtinger Flow: Theory and Algorithms , 2014, IEEE Transactions on Information Theory.

[32]  Yonina C. Eldar,et al.  Phase Retrieval via Matrix Completion , 2011, SIAM Rev..

[33]  Ruoyu Sun Matrix Completion via Nonconvex Factorization: Algorithms and Theory , 2015 .

[34]  Martin J. Wainwright,et al.  Fast low-rank estimation by projected gradient descent: General statistical and algorithmic guarantees , 2015, ArXiv.

[35]  Anastasios Kyrillidis,et al.  Dropping Convexity for Faster Semi-definite Optimization , 2015, COLT.

[36]  T. Chan,et al.  Guarantees of riemannian optimization for low rank matrix completion , 2016, Inverse Problems & Imaging.

[37]  Constantine Caramanis,et al.  Fast Algorithms for Robust PCA via Gradient Descent , 2016, NIPS.

[38]  Max Simchowitz,et al.  Low-rank Solutions of Linear Matrix Equations via Procrustes Flow , 2015, ICML.