Structural, dielectric and Mossbauer studies of PbFe0.5Sb0.5O3 ceramics with differing degree of compositional ordering

ABSTRACT Ceramic samples of a new perovskite multiferroic PbFe0.5Sb0.5O3 (PFS) with a differing degree S of long-range compositional ordering of the Fe3+ and Sb5+ cations were fabricated by a variation of the high-pressure-synthesis conditions. The S values estimated from the XRD data varied from 0.93 down to 0.17. The unit cell parameter was found to decrease with increasing S. In line with these results the fraction of the singlet component in the Mössbauer spectra was found to decrease with decreasing S. However, the temperatures and diffusion of dielectric permittivity maxima as well as the temperature of magnetic phase transition determined from Mössbauer data do not change substantially with S. These results imply that PFS remains highly ordered at the nanoscale.

[1]  S. Ananta,et al.  Influences of PZT addition on phase formation and magnetic properties of perovskite Pb(Fe0.5Nb0.5)O3-based ceramics , 2015 .

[2]  V. V. Titov,et al.  Bias Field Effect on the Dielectric and Pyroelectric Response of Pb(Fe0.5Ta0.5)O3 Relaxor Multiferroic Ceramics , 2015 .

[3]  V. V. Titov,et al.  Studies of Ferroelectric and Magnetic Phase Transitions in Multiferroic PbFe0.5Ta0.5O3 , 2015 .

[4]  V. V. Titov,et al.  Comparative Studies of Ferroelectric and Magnetic Phase Transitions in Pb(Fe1/2Nb1/2)O3-PbMO3 (M-Ti, Zr) Multiferroic Solid Solutions , 2015 .

[5]  V. V. Titov,et al.  Dielectric Properties of Undoped and Li-doped Pb(Fe1/2Nb1/2)O3 Ceramics Sintered from Mechanochemically Synthesized Powders , 2015 .

[6]  V. V. Titov,et al.  Dielectric and Mossbauer Studies of Pb(Fe1/2Ta1/2)O3 Multiferroic Ceramics Sintered from Mechanoactivated Powders , 2015 .

[7]  I. Raevski,et al.  Superspin glass phase and hierarchy of interactions in multiferroic PbFe1/2Sb1/2O3: an analog of ferroelectric relaxors? , 2014 .

[8]  V. V. Titov,et al.  Studies of ferroelectric and magnetic phase transitions in multiferroic PbFe0.5Ta0.5O3–PbTiO3 solid solution ceramics , 2014, Journal of Materials Science.

[9]  M. Glinchuk,et al.  Novel room temperature multiferroics on the base of single-phase nanostructured perovskites , 2014, 1404.3267.

[10]  G. Sreenivasulu,et al.  Room-temperature single phase multiferroic magnetoelectrics: Pb(Fe, M)x(Zr,Ti)(1−x)O3 [M = Ta, Nb] , 2013 .

[11]  V. V. Eremkin,et al.  Effect of Ba and Ti doping on magnetic properties of multiferroic Pb(Fe 1/2 Nb 1/2 )O 3 , 2013 .

[12]  V. V. Titov,et al.  Mössbauer Studies of PbFe0.5Nb0.5O3 - PbFe0.5Sb0.5O3 Multiferroic Solid Solutions , 2013 .

[13]  V. V. Titov,et al.  Dielectric and Mossbauer studies of ferroelectric and magnetic phase transitions in a-site and b-site substituted multiferroic PbFe0.5Nb0.5O3 , 2012, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[14]  S. Prosandeev,et al.  Magnetic properties of PbFe1/2Nb1/2O3: Mössbauer spectroscopy and first-principles calculations , 2012 .

[15]  V. V. Titov,et al.  Bias Field Effect on the Dielectric and Pyroelectric Response of Single Crystal of Uniaxial Relaxor Sr0.75Ba0.25Nb2O6 , 2012 .

[16]  Zhai Jiwei,et al.  Peculiarities of temperature and field dependence of tunability in Ba0.6Sr0.4TiO3 ceramics with differing grain sizes , 2011 .

[17]  M. Remškar,et al.  93Nb NMR and Fe3+ EPR study of local magnetic properties of magnetoelectric Pb(Fe1/2Nb1/2)O3 , 2010 .

[18]  V. V. Titov,et al.  The Effect of PbO-Nonstoichiometry on Dielectric and Semiconducting Properties of PbFe0.5Nb0.5O3-Based Ceramics , 2010 .

[19]  V. V. Titov,et al.  Dielectric and Mössbauer Studies of High-Permittivity BaFe1/2Nb1/2O3 Ceramics with Cubic and Monoclinic Perovskite Structures , 2009 .

[20]  V. V. Eremkin,et al.  Dielectric and Mossbauer Studies of Perovskite Multiferroics , 2008 .

[21]  Z. Ye,et al.  Ferroelectric to relaxor crossover and dielectric phase diagram in the BaTiO3–BaSnO3 system , 2007 .

[22]  D. Khomskii,et al.  Multiferroics: different ways to combine magnetism and ferroelectricity , 2006, cond-mat/0601696.

[23]  E. M. Kuznetsova,et al.  NaNbO3-Based Relaxor , 2004 .

[24]  Z. Ye,et al.  Empirical scaling of the dielectric permittivity peak in relaxor ferroelectrics , 2003 .

[25]  L. Jastrabík,et al.  Random-Site Cation Ordering and Dielectric Properties of PbMg 1/3 Nb 2/3 O 3 -PbSc 1/2 Nb 1/2 O 3 , 2003 .

[26]  L. Jastrabík,et al.  Random-Site Cation Ordering and Dielectric Properties of PbMg1/3Nb2/3O3-PbSc1/2Nb1/2O3 , 2003, cond-mat/0302520.

[27]  L. A. Shilkina,et al.  Growth and study of PbFe1/2Ta1/2O3 single crystals , 2002 .

[28]  I. Raevski,et al.  Study of intrinsic point defects in oxides of the perovskite family: I. Theory , 1996 .

[29]  R. Cohen,et al.  Theoretical study of cation ordering in the system Pb(Sc½Ta½)O3 , 1994 .

[30]  A. Bokov,et al.  Compositional ordering and phase transitions in Pb(Yb0.5Nb0.5)O3 , 1993 .

[31]  A. Bokov,et al.  Electric properties in the range of ferroelectric phase transitions in Pb(Fe0.5Nb0.5)O3 crystals and ceramics , 1992 .

[32]  N. Setter,et al.  The Role of B-Site Cation Disorder in Diffuse Phase-Transition Behavior of Perovskite Ferroelectrics , 1980 .

[33]  S. Nomura,et al.  Dielectric and Magnetic Properties of Pb(Fe1/2Ta1/2)O3 , 1968 .

[34]  M. A. Gilleo Superexchange interaction in ferrimagnetic garnets and spinels which contain randomly incomplete linkages , 1960 .