Klein-Gordon Representation of Acoustic Waves and Topological Origin of Surface Acoustic Modes.

Recently, it was shown that surface electromagnetic waves at interfaces between continuous homogeneous media (e.g., surface plasmon-polaritons at metal-dielectric interfaces) have a topological origin [K. Y. Bliokh et al., Nat. Commun. 10, 580 (2019)NCAOBW2041-172310.1038/s41467-019-08397-6]. This is explained by the nontrivial topology of the non-Hermitian photon helicity operator in the Weyl-like representation of Maxwell equations. Here we analyze another type of classical waves: longitudinal acoustic waves corresponding to spinless phonons. We show that surface acoustic waves, which appear at interfaces between media with opposite-sign densities, can be explained by similar topological features and the bulk-boundary correspondence. However, in contrast to photons, the topological properties of sound waves originate from the non-Hermitian four-momentum operator in the Klein-Gordon representation of acoustic fields.

[1]  A. Pires Topological insulators , 2021, A Brief Introduction to Topology and Differential Geometry in Condensed Matter Physics (Second Edition).

[2]  Quantum Electrodynamics , 2020, Master of Modern Physics.

[3]  F. Nori,et al.  Spin and orbital angular momenta of acoustic beams , 2019, Physical Review B.

[4]  Matthias Neufang Topological , 2019, 99 Variations on a Proof.

[5]  F. Nori,et al.  Topological non-Hermitian origin of surface Maxwell waves , 2019, Nature Communications.

[6]  Andrea Alù,et al.  Observation of higher-order topological acoustic states protected by generalized chiral symmetry , 2018, Nature Materials.

[7]  Franco Nori,et al.  Transverse spin and surface waves in acoustic metamaterials , 2018, Physical Review B.

[8]  Huy Quang Nguyen,et al.  Fluid mechanics , 2018, Radial Flow Turbocompressors.

[9]  Flore K. Kunst,et al.  Biorthogonal Bulk-Boundary Correspondence in Non-Hermitian Systems. , 2018, Physical review letters.

[10]  J. Vasseur,et al.  Spacetime representation of topological phononics , 2018 .

[11]  Zhong Wang,et al.  Edge States and Topological Invariants of Non-Hermitian Systems. , 2018, Physical review letters.

[12]  F. Nori,et al.  Electromagnetic Helicity in Complex Media. , 2018, Physical review letters.

[13]  Y. Ashida,et al.  Topological Phases of Non-Hermitian Systems , 2018, Physical Review X.

[14]  M. Rechtsman,et al.  Topological photonics , 2018, Reviews of Modern Physics.

[15]  F. Nori,et al.  Optical Momentum, Spin, and Angular Momentum in Dispersive Media. , 2017, Physical review letters.

[16]  M. Silveirinha,et al.  Berry Phase, Berry Connection, and Chern Number for a Continuum Bianisotropic Material From a Classical Electromagnetics Perspective , 2016, IEEE Journal on Multiscale and Multiphysics Computational Techniques.

[17]  Franco Nori,et al.  Edge Modes, Degeneracies, and Topological Numbers in Non-Hermitian Systems. , 2016, Physical review letters.

[18]  P. Deymier,et al.  One-Dimensional Mass-Spring Chains Supporting Elastic Waves with Non-Conventional Topology , 2016 .

[19]  A. Alú,et al.  Controlling sound with acoustic metamaterials , 2016 .

[20]  P. Sheng,et al.  Acoustic metamaterials: From local resonances to broad horizons , 2016, Science Advances.

[21]  Xu Ni,et al.  Acoustic topological insulator and robust one-way sound transport , 2015, Nature Physics.

[22]  M. Silveirinha Chern invariants for continuous media , 2015 .

[23]  Shinsei Ryu,et al.  Classification of topological quantum matter with symmetries , 2015, 1505.03535.

[24]  Franco Nori,et al.  Transverse and longitudinal angular momenta of light , 2015, 1504.03113.

[25]  D. Kleckner,et al.  Topological mechanics of gyroscopic metamaterials , 2015, Proceedings of the National Academy of Sciences.

[26]  K. Bertoldi,et al.  Topological Phononic Crystals with One-Way Elastic Edge Waves. , 2015, Physical review letters.

[27]  M. Soljačić,et al.  Topological photonics , 2014, Nature Photonics.

[28]  M. Ruzzene,et al.  Dynamics of Phononic Materials and Structures: Historical Origins, Recent Progress, and Future Outlook , 2014 .

[29]  Felix Dreisow,et al.  Photonic Floquet topological insulators , 2012, Nature.

[30]  Etienne Brasselet,et al.  Acoustic rotational manipulation using orbital angular momentum transfer. , 2012, Physical review letters.

[31]  Sandy Cochran,et al.  Mechanical evidence of the orbital angular momentum to energy ratio of vortex beams. , 2012, Physical review letters.

[32]  Gennady Shvets,et al.  Photonic topological insulators. , 2012, Nature materials.

[33]  Chul Koo Kim,et al.  Amplification of acoustic evanescent waves using metamaterial slabs. , 2011, Physical review letters.

[34]  X. Qi,et al.  Topological insulators and superconductors , 2010, 1008.2026.

[35]  Xiao-Liang Qi,et al.  The quantum spin Hall effect and topological insulators , 2010, 1001.1602.

[36]  Ming-Hui Lu,et al.  Phononic crystals and acoustic metamaterials , 2009 .

[37]  Zheng Wang,et al.  Observation of unidirectional backscattering-immune topological electromagnetic states , 2009, Nature.

[38]  M. Padgett,et al.  Advances in optical angular momentum , 2008 .

[39]  Karen Volke-Sepúlveda,et al.  Transfer of angular momentum to matter from acoustical vortices in free space. , 2008, Physical review letters.

[40]  F. García-Vidal,et al.  Collimation of sound assisted by acoustic surface waves , 2007 .

[41]  Franco Nori,et al.  Colloquium: Unusual resonators: Plasmonics, metamaterials, and random media , 2007, 0708.2653.

[42]  A.C. Newell,et al.  Single-Negative, Double-Negative, and Low-index Metamaterials and their Electromagnetic Applications , 2007, IEEE Antennas and Propagation Magazine.

[43]  Xiang Zhang,et al.  Surface resonant states and superlensing in acoustic metamaterials , 2007 .

[44]  S. Maier Plasmonics: Fundamentals and Applications , 2007 .

[45]  A. V. Kats,et al.  Left-handed interfaces for electromagnetic surface waves. , 2007, Physical review letters.

[46]  A. Maradudin,et al.  Nano-optics of surface plasmon polaritons , 2005 .

[47]  David R. Smith,et al.  Metamaterials and Negative Refractive Index , 2004, Science.

[48]  E. Pike,et al.  The acoustical Klein-Gordon equation: the wave-mechanical step and barrier potential functions. , 2003, The Journal of the Acoustical Society of America.

[49]  Y. Kivshar,et al.  Nonlinear surface waves in left-handed materials. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[50]  E. Pike,et al.  Acoustical Klein-Gordon equation: a time-independent perturbation analysis. , 2002, Physical review letters.

[51]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[52]  R. Fox,et al.  Classical Electrodynamics, 3rd ed. , 1999 .

[53]  J. Joannopoulos,et al.  Photonic crystals: putting a new twist on light , 1997, Nature.

[54]  S. Tiwari On the Berry phase , 1990 .

[55]  B. Auld,et al.  Acoustic fields and waves in solids , 1973 .

[56]  W. Hager,et al.  and s , 2019, Shallow Water Hydraulics.

[57]  Zhang Xiao,et al.  Phononic crystals and acoustic metamaterials , 2012 .

[58]  W. Marsden I and J , 2012 .

[59]  S. Barnett,et al.  Orbital angular momentum of light , 2007 .

[60]  Richard A. Goldingy,et al.  Using an object-oriented framework to construct wide-area group communication mechanisms , 2007 .

[61]  Iroon Polytechniou Influence of cultivation temperature on the ligninolytic activity of selected fungal strains , 2006 .

[62]  L. Sehgal,et al.  Γ and B , 2004 .

[63]  Miles J. Padgett,et al.  IV The Orbital Angular Momentum of Light , 1999 .

[64]  I. Bialynicki-Birula V Photon Wave Function , 1996 .

[65]  Alexei A. Maradudin Edge Modes , 1974 .

[66]  and as an in , 2022 .