Innate and adaptive immune responses against Staphylococcus aureus skin infections

[1]  L. Miller,et al.  Immunity against Staphylococcus aureus cutaneous infections , 2011, Nature Reviews Immunology.

[2]  Matthias Kretzler,et al.  Netting Neutrophils Induce Endothelial Damage, Infiltrate Tissues, and Expose Immunostimulatory Molecules in Systemic Lupus Erythematosus , 2011, The Journal of Immunology.

[3]  A. Bruce,et al.  Mast Cells and Neutrophils Release IL-17 through Extracellular Trap Formation in Psoriasis , 2011, The Journal of Immunology.

[4]  S. Akira,et al.  Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. , 2011, Immunity.

[5]  E. Elinav,et al.  Regulation of the antimicrobial response by NLR proteins. , 2011, Immunity.

[6]  C. Bodemer,et al.  Chronic Mucocutaneous Candidiasis in Humans with Inborn Errors of Interleukin-17 Immunity , 2011, Science.

[7]  S. Simon,et al.  Noninvasive in vivo imaging to evaluate immune responses and antimicrobial therapy against Staphylococcus aureus and USA300 MRSA skin infections. , 2011, The Journal of investigative dermatology.

[8]  S. Simon,et al.  Neutrophil survival and c-kit(+)-progenitor proliferation in Staphylococcus aureus-infected skin wounds promote resolution. , 2011, Blood.

[9]  J. Casanova,et al.  Human TLRs and IL-1Rs in host defense: natural insights from evolutionary, epidemiological, and clinical genetics. , 2011, Annual review of immunology.

[10]  H. Uchi,et al.  Decrease in circulating Th17 cells correlates with increased levels of CCL17, IgE and eosinophils in atopic dermatitis. , 2011, Journal of dermatological science.

[11]  Martin Schaller,et al.  Skin commensals amplify the innate immune response to pathogens by activation of distinct signaling pathways. , 2011, The Journal of investigative dermatology.

[12]  F. DeLeo,et al.  A MRSA-terious enemy among us: Boosting MRSA vaccines , 2011, Nature Medicine.

[13]  A. Classen,et al.  TNF receptor I on human keratinocytes is a binding partner for staphylococcal protein A resulting in the activation of NF kappa B, AP‐1, and downstream gene transcription , 2011, Experimental dermatology.

[14]  Sara E Cosgrove,et al.  Clinical practice guidelines by the infectious diseases society of america for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children. , 2011, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[15]  M. Surette,et al.  A Novel Mechanism of Rapid Nuclear Neutrophil Extracellular Trap Formation in Response to Staphylococcus aureus , 2010, The Journal of Immunology.

[16]  L. Miller,et al.  Lucky number seven: RNase 7 can prevent Staphylococcus aureus skin colonization. , 2010, The Journal of investigative dermatology.

[17]  J. Harder,et al.  RNase 7 protects healthy skin from Staphylococcus aureus colonization. , 2010, The Journal of investigative dermatology.

[18]  S. Burns,et al.  Recent advances in the understanding of genetic defects of neutrophil number and function , 2010, British journal of haematology.

[19]  S. Deresinski,et al.  Immunotherapies for Staphylococcus aureus: Current Challenges and Future Prospects , 2010, Infection Control & Hospital Epidemiology.

[20]  Douglas R. McDonald,et al.  Clinical Features and Outcome of Patients With IRAK-4 and MyD88 Deficiency , 2010, Medicine.

[21]  R. Betts,et al.  Safety and Immunogenicity of a Novel Staphylococcus aureus Vaccine: Results from the First Study of the Vaccine Dose Range in Humans , 2010, Clinical and Vaccine Immunology.

[22]  S. Kaesler,et al.  Staphylococcal Peptidoglycan Co-Localizes with Nod2 and TLR2 and Activates Innate Immune Response via Both Receptors in Primary Murine Keratinocytes , 2010, PloS one.

[23]  Adeline R. Whitney,et al.  Targeting of alpha-hemolysin by active or passive immunization decreases severity of USA300 skin infection in a mouse model. , 2010, The Journal of infectious diseases.

[24]  M. Otto Basis of virulence in community-associated methicillin-resistant Staphylococcus aureus. , 2010, Annual review of microbiology.

[25]  Allen F Ryan,et al.  Activation of TLR2 by a small molecule produced by Staphylococcus epidermidis increases antimicrobial defense against bacterial skin infections. , 2010, The Journal of investigative dermatology.

[26]  D. Missiakas,et al.  Nontoxigenic protein A vaccine for methicillin-resistant Staphylococcus aureus infections in mice , 2010, The Journal of experimental medicine.

[27]  C. Tato,et al.  Innate IL-17-producing cells: the sentinels of the immune system , 2010, Nature Reviews Immunology.

[28]  D. Missiakas,et al.  Contribution of Coagulases towards Staphylococcus aureus Disease and Protective Immunity , 2010, PLoS pathogens.

[29]  F. Olaru,et al.  Staphylococcus aureus stimulates neutrophil targeting chemokine expression in keratinocytes through an autocrine IL-1alpha signaling loop. , 2010, The Journal of investigative dermatology.

[30]  T. Hehlgans,et al.  Human β-Defensin 2 and 3 and Their Mouse Orthologs Induce Chemotaxis through Interaction with CCR2 , 2010, The Journal of Immunology.

[31]  F. DeLeo,et al.  Community-associated meticillin-resistant Staphylococcus aureus , 2010, The Lancet.

[32]  R. Dziarski,et al.  Review: Mammalian peptidoglycan recognition proteins (PGRPs) in innate immunity , 2010, Innate immunity.

[33]  S. Gabrysch,et al.  Severity of Staphylococcus aureus Infection of the Skin Is Associated with Inducibility of Human β-Defensin 3 but Not Human β-Defensin 2 , 2010, Infection and Immunity.

[34]  M. Otto Staphylococcus colonization of the skin and antimicrobial peptides. , 2010, Expert review of dermatology.

[35]  E. Pietras,et al.  IL-17 is essential for host defense against cutaneous Staphylococcus aureus infection in mice. , 2010, The Journal of clinical investigation.

[36]  S. Akira,et al.  Pattern Recognition Receptors and Inflammation , 2010, Cell.

[37]  G. Franchini,et al.  Th17 cells in pathogenic simian immunodeficiency virus infection of macaques , 2010, Current opinion in HIV and AIDS.

[38]  W. Paul,et al.  Mechanisms Underlying Lineage Commitment and Plasticity of Helper CD4+ T Cells , 2010, Science.

[39]  P. Klenerman,et al.  HIV-1 infection is characterized by profound depletion of CD161+ Th17 cells and gradual decline in regulatory T cells , 2010, AIDS.

[40]  F. Cetani,et al.  Abbreviations used: AD, , 2022 .

[41]  A. Fischer,et al.  Autoantibodies against IL-17A, IL-17F, and IL-22 in patients with chronic mucocutaneous candidiasis and autoimmune polyendocrine syndrome type I , 2010, The Journal of experimental medicine.

[42]  B. Bröker,et al.  Towards the immune proteome of Staphylococcus aureus - The anti-S. aureus antibody response. , 2010, International journal of medical microbiology : IJMM.

[43]  A. Aderem,et al.  Staphylococcus aureus evades lysozyme-based peptidoglycan digestion that links phagocytosis, inflammasome activation, and IL-1beta secretion. , 2010, Cell host & microbe.

[44]  J. Tschopp,et al.  The Inflammasomes , 2010, Cell.

[45]  S. Holland,et al.  Combined immunodeficiency associated with DOCK8 mutations. , 2009, The New England journal of medicine.

[46]  Edward R B McCabe,et al.  Large deletions and point mutations involving the dedicator of cytokinesis 8 (DOCK8) in the autosomal-recessive form of hyper-IgE syndrome. , 2009, The Journal of allergy and clinical immunology.

[47]  J. Farber,et al.  Th1-Th17 Cells Mediate Protective Adaptive Immunity against Staphylococcus aureus and Candida albicans Infection in Mice , 2009, PLoS pathogens.

[48]  M. Worm,et al.  Association of the toll‐like receptor 2 A‐16934T promoter polymorphism with severe atopic dermatitis , 2009, Allergy.

[49]  H. Kalbacher,et al.  The Bacterial Defensin Resistance Protein MprF Consists of Separable Domains for Lipid Lysinylation and Antimicrobial Peptide Repulsion , 2009, PLoS pathogens.

[50]  V. Nizet,et al.  Neutrophil antimicrobial defense against Staphylococcus aureus is mediated by phagolysosomal but not extracellular trap‐associated cathelicidin , 2009, Journal of leukocyte biology.

[51]  Denis Gris,et al.  Staphylococcus aureus α-Hemolysin Activates the NLRP3-Inflammasome in Human and Mouse Monocytic Cells , 2009, PloS one.

[52]  Frank O. Nestle,et al.  Skin immune sentinels in health and disease , 2009, Nature Reviews Immunology.

[53]  G. Núñez,et al.  A Critical Role for Hemolysins and Bacterial Lipoproteins in Staphylococcus aureus-Induced Activation of the Nlrp3 Inflammasome1 , 2009, The Journal of Immunology.

[54]  V. Nizet,et al.  NOD2 contributes to cutaneous defense against Staphylococcus aureus through α-toxin-dependent innate immune activation , 2009, Proceedings of the National Academy of Sciences.

[55]  T. Chatila,et al.  Defects along the T(H)17 differentiation pathway underlie genetically distinct forms of the hyper IgE syndrome. , 2009, The Journal of allergy and clinical immunology.

[56]  H. Takada,et al.  Molecular explanation for the contradiction between systemic Th17 defect and localized bacterial infection in hyper-IgE syndrome , 2009, The Journal of experimental medicine.

[57]  Lisa C. Zaba,et al.  IL-22-producing "T22" T cells account for upregulated IL-22 in atopic dermatitis despite reduced IL-17-producing TH17 T cells. , 2009, The Journal of allergy and clinical immunology.

[58]  Thomas Korn,et al.  IL-17 and Th17 Cells. , 2009, Annual review of immunology.

[59]  F. Vandenesch,et al.  The Panton-Valentine leukocidin vaccine protects mice against lung and skin infections caused by Staphylococcus aureus USA300. , 2009, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[60]  W. Kelley,et al.  Staphylococcus aureus: new evidence for intracellular persistence. , 2009, Trends in microbiology.

[61]  Carole R. Baskin,et al.  Critical Loss of the Balance between Th17 and T Regulatory Cell Populations in Pathogenic SIV Infection , 2009, PLoS pathogens.

[62]  C. Sasakawa,et al.  Differential roles of interleukin-17A and -17F in host defense against mucoepithelial bacterial infection and allergic responses. , 2009, Immunity.

[63]  T. Ruzicka,et al.  IL-17A Enhances Vitamin D3-Induced Expression of Cathelicidin Antimicrobial Peptide in Human Keratinocytes1 , 2008, The Journal of Immunology.

[64]  J. Carucci,et al.  Low Expression of the IL-23/Th17 Pathway in Atopic Dermatitis Compared to Psoriasis1 , 2008, The Journal of Immunology.

[65]  Jean C. Lee,et al.  Vaccination and passive immunisation against Staphylococcus aureus. , 2008, International journal of antimicrobial agents.

[66]  L. Miller Toll-like receptors in skin. , 2008, Advances in dermatology.

[67]  E. Cercenado,et al.  [Community-acquired methicillin-resistant Staphylococcus aureus]. , 2008, Enfermedades infecciosas y microbiologia clinica.

[68]  R. Gallo,et al.  Antimicrobial peptides and the skin immune defense system. , 2008, The Journal of allergy and clinical immunology.

[69]  S. Tangye,et al.  Deficiency of Th17 cells in hyper IgE syndrome due to mutations in STAT3 , 2008, The Journal of experimental medicine.

[70]  T. Hartung,et al.  Cellular trafficking of lipoteichoic acid and Toll‐like receptor 2 in relation to signaling; role of CD14 and CD36 , 2008, Journal of leukocyte biology.

[71]  M. Leppert,et al.  Novel signal transducer and activator of transcription 3 (STAT3) mutations, reduced T(H)17 cell numbers, and variably defective STAT3 phosphorylation in hyper-IgE syndrome. , 2008, The Journal of allergy and clinical immunology.

[72]  Fred C Tenover,et al.  Changes in the prevalence of nasal colonization with Staphylococcus aureus in the United States, 2001-2004. , 2008, The Journal of infectious diseases.

[73]  W. Paul,et al.  Impaired TH17 cell differentiation in subjects with autosomal dominant hyper-IgE syndrome , 2008, Nature.

[74]  O. Schneewind,et al.  Vaccine protection against Staphylococcus aureus pneumonia , 2008, The Journal of experimental medicine.

[75]  Eric P. Skaar,et al.  Metal Chelation and Inhibition of Bacterial Growth in Tissue Abscesses , 2008, Science.

[76]  Lawrence H. Uricchio,et al.  Inflammasome-mediated production of IL-1β is required for neutrophil recruitment against Staphylococcus aureus in vivo. , 2008, The Journal of Immunology.

[77]  Eric P. Skaar,et al.  Neutrophil Microbicides Induce a Pathogen Survival Response in Community-Associated Methicillin-Resistant Staphylococcus aureus1 , 2008, The Journal of Immunology.

[78]  J. Banchereau,et al.  Pyogenic Bacterial Infections in Humans with MyD88 Deficiency , 2003, Science.

[79]  D. Kasper,et al.  IFN-gamma regulated chemokine production determines the outcome of Staphylococcus aureus infection. , 2008, Journal of immunology.

[80]  A. Kennedy,et al.  Identification of novel cytolytic peptides as key virulence determinants for community-associated MRSA , 2007, Nature Medicine.

[81]  Lawrence H. Uricchio,et al.  Inflammasome-Mediated Production of IL-1β Is Required for Neutrophil Recruitment against Staphylococcus aureus In Vivo1 , 2007, The Journal of Immunology.

[82]  Bodo Grimbacher,et al.  STAT3 mutations in the hyper-IgE syndrome. , 2007, The New England journal of medicine.

[83]  Roberta B Carey,et al.  Invasive methicillin-resistant Staphylococcus aureus infections in the United States. , 2007, JAMA.

[84]  M. Boguniewicz,et al.  The constitutive capacity of human keratinocytes to kill Staphylococcus aureus is dependent on beta-defensin 3. , 2007, The Journal of investigative dermatology.

[85]  Douglas R. McDonald,et al.  Selective predisposition to bacterial infections in IRAK-4–deficient children: IRAK-4–dependent TLRs are otherwise redundant in protective immunity , 2007, The Journal of experimental medicine.

[86]  A. Soruri,et al.  Chemoattraction of Macrophages, T Lymphocytes, and Mast Cells Is Evolutionarily Conserved within the Human α-Defensin Family1 , 2007, The Journal of Immunology.

[87]  M. Girardi Cutaneous Perspectives on Adaptive Immunity , 2007, Clinical reviews in allergy & immunology.

[88]  R. Schelonka,et al.  Clinical trial of safety and efficacy of INH-A21 for the prevention of nosocomial staphylococcal bloodstream infection in premature infants. , 2007, The Journal of pediatrics.

[89]  M. Cybulsky,et al.  Getting to the site of inflammation: the leukocyte adhesion cascade updated , 2007, Nature Reviews Immunology.

[90]  H. Takada,et al.  Dominant-negative mutations in the DNA-binding domain of STAT3 cause hyper-IgE syndrome , 2007, Nature.

[91]  C. Scavone,et al.  Neutrophil function and metabolism in individuals with diabetes mellitus. , 2007, Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas.

[92]  R. Daum Skin and Soft-Tissue Infections Caused by Methicillin-Resistant Staphylococcus aureus , 2007 .

[93]  S. Foster,et al.  The Staphylococcus aureus surface protein IsdA mediates resistance to innate defenses of human skin. , 2007, Cell host & microbe.

[94]  M. Hashimoto,et al.  Response to Comment on “Not Lipoteichoic Acid but Lipoproteins Appear to Be the Dominant Immunobiologically Active Compounds in Staphylococcus aureus” , 2007, The Journal of Immunology.

[95]  Y. Helfrich,et al.  Injury enhances TLR2 function and antimicrobial peptide expression through a vitamin D-dependent mechanism. , 2007, The Journal of clinical investigation.

[96]  L. Miller,et al.  A prospective investigation of outcomes after hospital discharge for endemic, community-acquired methicillin-resistant and -susceptible Staphylococcus aureus skin infection. , 2007, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[97]  L. Miller,et al.  Human keratinocyte Toll-like receptors promote distinct immune responses. , 2007, The Journal of investigative dermatology.

[98]  B. Talbot,et al.  Protective immune responses to a multi-gene DNA vaccine against Staphylococcus aureus. , 2007, Vaccine.

[99]  R. Lehrer,et al.  Multispecific myeloid defensins , 2007, Current opinion in hematology.

[100]  D. Sturdevant,et al.  The human anionic antimicrobial peptide dermcidin induces proteolytic defence mechanisms in staphylococci , 2007, Molecular microbiology.

[101]  T. Hartung,et al.  Comment on “Not Lipoteichoic Acid but Lipoproteins Appear to Be the Dominant Immunobiologically Active Compounds in Staphylococcus aureus” , 2006, The Journal of Immunology.

[102]  R. Daum,et al.  Clinical practice. Skin and soft-tissue infections caused by methicillin-resistant Staphylococcus aureus. , 2007, The New England journal of medicine.

[103]  A. Zychlinsky,et al.  How do microbes evade neutrophil killing? , 2006, Cellular microbiology.

[104]  L. McCaig,et al.  Staphylococcus aureus–associated Skin and Soft Tissue Infections in Ambulatory Care , 2006, Emerging infectious diseases.

[105]  L. Fouser,et al.  Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides , 2006, The Journal of experimental medicine.

[106]  B. Menzies,et al.  In Skin Keratinocytes -defensin 3 Β Induced Expression of Human Staphylococcus Aureus- Responses in Signal Transduction and Nuclear , 2006 .

[107]  D. Skiest,et al.  Community‐onset methicillin‐resistant Staphylococcus aureus in an urban HIV clinic , 2006, HIV medicine.

[108]  R. Weinstein,et al.  Community-associated Methicillin-resistant Staphylococcus aureus , 2006, Emerging infectious diseases.

[109]  Roberta B Carey,et al.  Methicillin-resistant S. aureus infections among patients in the emergency department. , 2006, The New England journal of medicine.

[110]  M. Deeg,et al.  Naturally Processed Dermcidin-Derived Peptides Do Not Permeabilize Bacterial Membranes and Kill Microorganisms Irrespective of Their Charge , 2006, Antimicrobial Agents and Chemotherapy.

[111]  A. Tzianabos,et al.  CD4+ T cells and CXC chemokines modulate the pathogenesis of Staphylococcus aureus wound infections , 2006, Proceedings of the National Academy of Sciences.

[112]  A. Schmidtchen,et al.  Injury-induced innate immune response in human skin mediated by transactivation of the epidermal growth factor receptor. , 2006, The Journal of clinical investigation.

[113]  M. Chonchol HEMATOLOGY: ISSUES IN THE DIALYSIS PATIENT: Neutrophil Dysfunction and Infection Risk in End‐Stage Renal Disease , 2006 .

[114]  S. Akira,et al.  Induction of β-defensin 3 in keratinocytes stimulated by bacterial lipopeptides through toll-like receptor 2 , 2006 .

[115]  K. Rabe,et al.  Human Cathelicidin LL-37 Is a Chemoattractant for Eosinophils and Neutrophils That Acts via Formyl-Peptide Receptors , 2006, International Archives of Allergy and Immunology.

[116]  H. Augustin,et al.  The extracellular adherence protein (Eap) of Staphylococcus aureus inhibits wound healing by interfering with host defense and repair mechanisms. , 2006, Blood.

[117]  J. Adams,et al.  Toll-Like Receptor Triggering of a Vitamin D-Mediated Human Antimicrobial Response , 2006, Science.

[118]  M. Girardi Immunosurveillance and Immunoregulation by γδ T Cells , 2006 .

[119]  S. Akira,et al.  Induction of beta-defensin 3 in keratinocytes stimulated by bacterial lipopeptides through toll-like receptor 2. , 2006, Microbes and infection.

[120]  M. Girardi Immunosurveillance and immunoregulation by gammadelta T cells. , 2006, The Journal of investigative dermatology.

[121]  Ryan M. O’Connell,et al.  MyD88 mediates neutrophil recruitment initiated by IL-1R but not TLR2 activation in immunity against Staphylococcus aureus. , 2006, Immunity.

[122]  J. V. van Strijp,et al.  Staphylococcal innate immune evasion. , 2005, Trends in microbiology.

[123]  T. Foster Immune evasion by staphylococci , 2005, Nature Reviews Microbiology.

[124]  J. McCutchan,et al.  Incidence of and Risk Factors for Clinically Significant Methicillin-Resistant Staphylococcus aureus Infection in a Cohort of HIV-Infected Adults , 2005, Journal of acquired immune deficiency syndromes.

[125]  K. Fukase,et al.  Human peptidoglycan recognition protein S is an effector of neutrophil-mediated innate immunity. , 2005, Blood.

[126]  V. Nizet,et al.  Keratinocyte Production of Cathelicidin Provides Direct Activity against Bacterial Skin Pathogens , 2005, Infection and Immunity.

[127]  R. Dziarski,et al.  Staphylococcus aureus Peptidoglycan Is a Toll-Like Receptor 2 Activator: a Reevaluation , 2005, Infection and Immunity.

[128]  V. Nizet,et al.  Staphylococcus aureus golden pigment impairs neutrophil killing and promotes virulence through its antioxidant activity , 2005, The Journal of experimental medicine.

[129]  D. Philpott,et al.  Recognition of Staphylococcus aureus by the Innate Immune System , 2005, Clinical Microbiology Reviews.

[130]  K. Dietz,et al.  Deficiency of Dermcidin-Derived Antimicrobial Peptides in Sweat of Patients with Atopic Dermatitis Correlates with an Impaired Innate Defense of Human Skin In Vivo1 , 2005, The Journal of Immunology.

[131]  K. Sayama,et al.  New mechanisms of skin innate immunity: ASK1‐mediated keratinocyte differentiation regulates the expression of β‐defensins, LL37, and TLR2 , 2005, European journal of immunology.

[132]  T. Ganz,et al.  TGF-α Regulates TLR Expression and Function on Epidermal Keratinocytes1 , 2005, The Journal of Immunology.

[133]  L. Mascola,et al.  MRSA outbreak was controlled with daily hexachlorophene showers and hygiene education. , 2005, Emerging Infectious Diseases.

[134]  Thomas Hartung,et al.  CD36 is a sensor of diacylglycerides , 2005, Nature.

[135]  Wuyuan Lu,et al.  Antibacterial Activity and Specificity of the Six Human α-Defensins , 2005, Antimicrobial Agents and Chemotherapy.

[136]  A. Hidrón,et al.  Risk factors for colonization with methicillin-resistant Staphylococcus aureus (MRSA) in patients admitted to an urban hospital: emergence of community-associated MRSA nasal carriage. , 2004, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[137]  A. Segal,et al.  How neutrophils kill microbes. , 2005, Annual review of immunology.

[138]  L. Mascola,et al.  Recurring methicillin-resistant Staphylococcus aureus infections in a football team. , 2005, Emerging infectious diseases.

[139]  W. Shafer,et al.  Degradation of Human Antimicrobial Peptide LL-37 by Staphylococcus aureus-Derived Proteinases , 2004, Antimicrobial Agents and Chemotherapy.

[140]  John H. White,et al.  Cutting Edge: 1,25-Dihydroxyvitamin D3 Is a Direct Inducer of Antimicrobial Peptide Gene Expression , 2004, The Journal of Immunology.

[141]  R. Locksley,et al.  Innate Immune Responses in Peptidoglycan Recognition Protein L-Deficient Mice , 2004, Molecular and Cellular Biology.

[142]  Bharat Reddy,et al.  Staphylococcus aureus protein A induces airway epithelial inflammatory responses by activating TNFR1 , 2004, Nature Medicine.

[143]  E. Prossnitz,et al.  Chemotaxis Inhibitory Protein of Staphylococcus aureus Binds Specifically to the C5a and Formylated Peptide Receptor , 2004, The Journal of Immunology.

[144]  A. Zychlinsky,et al.  Neutrophil Extracellular Traps Kill Bacteria , 2004, Science.

[145]  P. Ahmad-Nejad,et al.  The toll-like receptor 2 R753Q polymorphism defines a subgroup of patients with atopic dermatitis having severe phenotype. , 2004, The Journal of allergy and clinical immunology.

[146]  T. Kupper,et al.  Immune surveillance in the skin: mechanisms and clinical consequences , 2004, Nature Reviews Immunology.

[147]  T. Foster,et al.  Staphylococcus aureus Resists Human Defensins by Production of Staphylokinase, a Novel Bacterial Evasion Mechanism1 , 2004, The Journal of Immunology.

[148]  Koichi Fukase,et al.  Human Peptidoglycan Recognition Protein-L Is an N-Acetylmuramoyl-L-alanine Amidase* , 2003, Journal of Biological Chemistry.

[149]  R. Geha,et al.  Epicutaneous sensitization with superantigen induces allergic skin inflammation. , 2003, The Journal of allergy and clinical immunology.

[150]  K. Sullivan,et al.  Infections in Patients with Inherited Defects in Phagocytic Function , 2003, Clinical Microbiology Reviews.

[151]  S. Foster,et al.  Role and regulation of the superoxide dismutases of Staphylococcus aureus. , 2003, Microbiology.

[152]  J. Travers,et al.  Cytokine Milieu of Atopic Dermatitis, as Compared to Psoriasis, Skin Prevents Induction of Innate Immune Response Genes 1 , 2003, The Journal of Immunology.

[153]  R. Dziarski,et al.  Defect in neutrophil killing and increased susceptibility to infection with nonpathogenic gram-positive bacteria in peptidoglycan recognition protein-S (PGRP-S)-deficient mice. , 2003, Blood.

[154]  A. Al-ghonaium,et al.  Pyogenic Bacterial Infections in Humans with IRAK-4 Deficiency , 2003, Science.

[155]  Richard Platt,et al.  Risk of methicillin-resistant Staphylococcus aureus infection after previous infection or colonization. , 2003, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[156]  G. Darmstadt,et al.  Keratinocyte Expression of Human β Defensin 2 following Bacterial Infection: Role in Cutaneous Host Defense , 2003, Clinical Diagnostic Laboratory Immunology.

[157]  S. Akira,et al.  Recognition of lipopeptides by Toll-like receptors , 2002, Journal of endotoxin research.

[158]  Tomas Ganz,et al.  Endogenous antimicrobial peptides and skin infections in atopic dermatitis. , 2002, The New England journal of medicine.

[159]  L. Calza,et al.  Epidemiology and microbiology of cellulitis and bacterial soft tissue infection during HIV disease: a 10‐year survey , 2002, Journal of cutaneous pathology.

[160]  S. Black,et al.  Use of a Staphylococcus aureus conjugate vaccine in patients receiving hemodialysis. , 2002, The New England journal of medicine.

[161]  R. Bals,et al.  Human β‐defensin 4: a novel inducible peptide with a specific salt‐sensitive spectrum of antimicrobial activity , 2001, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[162]  Michael Otto,et al.  Staphylococcus aureus Resistance to Human Defensins and Evasion of Neutrophil Killing via the Novel Virulence Factor Mprf Is Based on Modification of Membrane Lipids with l-Lysine , 2001, The Journal of experimental medicine.

[163]  E. Gelfand,et al.  Preferential binding of Staphylococcus aureus to skin sites of Th2-mediated inflammation in a murine model. , 2001, The Journal of investigative dermatology.

[164]  E. González-Barca,et al.  Predisposing Factors and Outcome of Staphylococcus aureus Bacteremia in Neutropenic Patients with Cancer , 2001, European Journal of Clinical Microbiology and Infectious Diseases.

[165]  J. Schröder,et al.  Isolation and Characterization of Human β-Defensin-3, a Novel Human Inducible Peptide Antibiotic* , 2001, The Journal of Biological Chemistry.

[166]  A. Finn,et al.  Neutrophil disorders and their management , 2001, Journal of clinical pathology.

[167]  A. Tarkowski,et al.  Role of Neutrophil Leukocytes in Cutaneous Infection Caused by Staphylococcus aureus , 2000, Infection and Immunity.

[168]  Ji Ming Wang,et al.  Ll-37, the Neutrophil Granule–And Epithelial Cell–Derived Cathelicidin, Utilizes Formyl Peptide Receptor–Like 1 (Fprl1) as a Receptor to Chemoattract Human Peripheral Blood Neutrophils, Monocytes, and T Cells , 2000, The Journal of experimental medicine.

[169]  Ji Ming Wang,et al.  β-Defensins: Linking Innate and Adaptive Immunity Through Dendritic and T Cell CCR6 , 1999 .

[170]  H. Kalbacher,et al.  Inactivation of the dlt Operon inStaphylococcus aureus Confers Sensitivity to Defensins, Protegrins, and Other Antimicrobial Peptides* , 1999, The Journal of Biological Chemistry.

[171]  S. Holland,et al.  Hyper-IgE syndrome with recurrent infections--an autosomal dominant multisystem disorder. , 1999, The New England journal of medicine.

[172]  Leung,et al.  The role of superantigens in human diseases: therapeutic implications for the treatment of skin diseases , 1998, The British journal of dermatology.

[173]  A. Tarkowski,et al.  Role of neutrophils in experimental septicemia and septic arthritis induced by Staphylococcus aureus , 1997, Infection and immunity.

[174]  J. Schröder,et al.  A peptide antibiotic from human skin , 1997, Nature.

[175]  A. Tarkowski,et al.  Impact of interferon-gamma receptor deficiency on experimental Staphylococcus aureus septicemia and arthritis. , 1995, Journal of immunology.

[176]  I I Lelis,et al.  [Atopic dermatitis]. , 1980, Vestnik dermatologii i venerologii.