PUT‐CALL SYMMETRY: EXTENSIONS AND APPLICATIONS

Classic put-call symmetry relates the prices of puts and calls at strikes on opposite sides of the forward price. We extend put-call symmetry in several directions. Relaxing the assumptions, we generalize to unified local/stochastic volatility models and time-changed Levy processes, under a symmetry condition. Further relaxing the assumptions, we generalize to various asymmetric dynamics. Extending the conclusions, we take an arbitrarily given payoff of European style or single/double/sequential barrier style, and we construct a conjugate European-style claim of equal value, and thereby a semistatic hedge of the given payoff.

[1]  A. Veretennikov,et al.  Stochastic Differential and Evolution Equations , 1998 .

[2]  Roger Lee THE MOMENT FORMULA FOR IMPLIED VOLATILITY AT EXTREME STRIKES , 2004 .

[3]  R. Poulsen,et al.  Static hedging and model risk for barrier options , 2006 .

[4]  P. Carr,et al.  Option Pricing, Interest Rates and Risk Management: Towards a Theory of Volatility Trading , 2001 .

[5]  K. Stewart,et al.  Breaking Barriers , 2010 .

[6]  David S. Bates The skewness premium: option pricing under asymmetric processes , 1994 .

[7]  P. Carr,et al.  Hedging Complex Barrier Options , 2002 .

[8]  Mark D. Schroder,et al.  Changes of Numeraire for Pricing Futures, Forwards, and Options , 1999 .

[9]  P. Carr,et al.  Static Hedging of Exotic Options , 1998 .

[10]  G. Simon Behind the Mirror , 1987 .

[11]  Ioannis Karatzas,et al.  Brownian Motion and Stochastic Calculus , 1987 .

[12]  P. Protter Stochastic integration and differential equations , 1990 .

[13]  V. Komkov Symmetry and Duality , 1988 .

[14]  Roger Lee Implied and local volatilities under stochastic volatility , 2000 .

[15]  R. Poulsen Barrier options and their static hedges: simple derivations and extensions , 2006 .

[16]  N. Touzi,et al.  Option Hedging And Implied Volatilities In A Stochastic Volatility Model , 1996 .

[17]  E. Mordecki,et al.  Symmetry and duality in Lévy markets , 2006 .

[18]  M. Yor,et al.  The Fine Structure of Asset Retums : An Empirical Investigation ' , 2006 .

[19]  Xiongzhi Chen Brownian Motion and Stochastic Calculus , 2008 .