Current characterization methods for cellulose nanomaterials.

A new family of materials comprised of cellulose, cellulose nanomaterials (CNMs), having properties and functionalities distinct from molecular cellulose and wood pulp, is being developed for applications that were once thought impossible for cellulosic materials. Commercialization, paralleled by research in this field, is fueled by the unique combination of characteristics, such as high on-axis stiffness, sustainability, scalability, and mechanical reinforcement of a wide variety of materials, leading to their utility across a broad spectrum of high-performance material applications. However, with this exponential growth in interest/activity, the development of measurement protocols necessary for consistent, reliable and accurate materials characterization has been outpaced. These protocols, developed in the broader research community, are critical for the advancement in understanding, process optimization, and utilization of CNMs in materials development. This review establishes detailed best practices, methods and techniques for characterizing CNM particle morphology, surface chemistry, surface charge, purity, crystallinity, rheological properties, mechanical properties, and toxicity for two distinct forms of CNMs: cellulose nanocrystals and cellulose nanofibrils.

[1]  Liqing Wei,et al.  Chemical modification of nanocellulose with canola oil fatty acid methyl ester. , 2017, Carbohydrate polymers.

[2]  J. Moran‐Mirabal,et al.  The study of cell wall structure and cellulose–cellulase interactions through fluorescence microscopy , 2013, Cellulose.

[3]  E. J. Foster,et al.  Isolation of thermally stable cellulose nanocrystals by phosphoric acid hydrolysis. , 2013, Biomacromolecules.

[4]  T. Kondo The assignment of IR absorption bands due to free hydroxyl groups in cellulose , 1997, Cellulose.

[5]  W. Hinrichs,et al.  Development of Stable Influenza Vaccine Powder Formulations: Challenges and Possibilities , 2008, Pharmaceutical Research.

[6]  Lina Zhang,et al.  Effects of Crosslinking Methods on Structure and Properties of Cellulose/PVA Hydrogels , 2008 .

[7]  D. Gray,et al.  Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose , 1998 .

[8]  Gunnar Henriksson,et al.  An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers , 2007 .

[9]  Atsuomi Shundo,et al.  Dynamic structure and functionalization of polymer interfaces , 2015 .

[10]  Robin H. A. Ras,et al.  Functionalization of nanofibrillated cellulose with silver nanoclusters: fluorescence and antibacterial activity. , 2011, Macromolecular bioscience.

[11]  К. Siegbahn Elektronnaya spektroskopiya atomov, molekul i kondensirovannogo veshchestva , 1982 .

[12]  Igor L. Medintz,et al.  Intracellular FRET-based probes: a review , 2015, Methods and applications in fluorescence.

[13]  Nathan J. Dawson,et al.  Concurrent Cellulose Hydrolysis and Esterification to Prepare a Surface-Modified Cellulose Nanocrystal Decorated with Carboxylic Acid Moieties , 2016 .

[14]  Richard K. Johnson,et al.  Preparation and characterization of hydrophobic derivatives of TEMPO-oxidized nanocelluloses , 2011 .

[15]  Ching-Wei Chang,et al.  Molecular Reproduction & Development 82 : 587 – 604 ( 2015 ) FRAP , FLIM , and FRET : Detection and Analysis of Cellular Dynamics on a Molecular Scale Using Fluorescence Microscopy , 2015 .

[16]  Rajan P Kulkarni,et al.  Nano-Bio-Genesis: tracing the rise of nanotechnology and nanobiotechnology as 'big science' , 2007, Journal of biomedical discovery and collaboration.

[17]  L. Maxim,et al.  Perspectives on refractory ceramic fiber (RCF) carcinogenicity: comparisons with other fibers , 2014, Inhalation toxicology.

[18]  H. Yano,et al.  Fast and Robust Nanocellulose Width Estimation Using Turbidimetry. , 2016, Macromolecular rapid communications.

[19]  Reinhard Vehring,et al.  Pharmaceutical Particle Engineering via Spray Drying , 2007, Pharmaceutical Research.

[20]  Constitutive modeling of fiber‐reinforced aerogels , 2015 .

[21]  J. Douglas,et al.  Transport Properties of Rodlike Particles , 2008 .

[22]  S. Fischer,et al.  New Method for Determining the Degree of Cellulose I Crystallinity by Means of FT Raman Spectroscopy , 2005 .

[23]  M. Valcárcel,et al.  Photoluminescent sensing hydrogel platform based on the combination of nanocellulose and S,N-codoped graphene quantum dots , 2017 .

[24]  Peter Wick,et al.  Can the Ames test provide an insight into nano-object mutagenicity? Investigating the interaction between nano-objects and bacteria , 2013, Nanotoxicology.

[25]  E. J. Foster,et al.  Fate of cellulose nanocrystal aerosols deposited on the lung cell surface in vitro. , 2015, Biomacromolecules.

[26]  Sourav Bhattacharjee,et al.  DLS and zeta potential - What they are and what they are not? , 2016, Journal of controlled release : official journal of the Controlled Release Society.

[27]  L. Heux,et al.  Gas-phase surface esterification of cellulose microfibrils and whiskers. , 2009, Biomacromolecules.

[28]  Madhu Kaushik,et al.  Review: nanocelluloses as versatile supports for metal nanoparticles and their applications in catalysis , 2016 .

[29]  W. Hamad,et al.  Cellulose reinforced polymer composites and nanocomposites: a critical review , 2013, Cellulose.

[30]  C. Schütz,et al.  Influence of the Particle Concentration and Marangoni Flow on the Formation of Cellulose Nanocrystal Films. , 2017, Langmuir : the ACS journal of surfaces and colloids.

[31]  S. Bourbigot,et al.  Preparation of Homogeneously Dispersed Multiwalled Carbon Nanotube/Polystyrene Nanocomposites via Melt Extrusion Using Trialkyl Imidazolium Compatibilizer , 2005 .

[32]  T. Vuorinen,et al.  Mechanoradical formation and its effects on birch kraft pulp during the preparation of nanofibrillated cellulose with Masuko refining , 2012 .

[33]  M. Faustini,et al.  Water Vapor Uptake of Ultrathin Films of Biologically Derived Nanocrystals: Quantitative Assessment with Quartz Crystal Microbalance and Spectroscopic Ellipsometry. , 2015, Langmuir : the ACS journal of surfaces and colloids.

[34]  C. G. Vonk Computerization of Ruland's X-ray method for determination of the crystallinity in polymers , 1973 .

[35]  J. C. H. Affdl,et al.  The Halpin-Tsai Equations: A Review , 1976 .

[36]  Olli Ikkala,et al.  Long and entangled native cellulose I nanofibers allow flexible aerogels and hierarchically porous templates for functionalities , 2008 .

[37]  Yang Ouyang,et al.  Biomimetic mineralization synthesis of hydroxyapatite bacterial cellulose nanocomposites , 2011 .

[38]  O. Ikkala,et al.  Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. , 2007, Biomacromolecules.

[39]  Markus Schulz,et al.  Genotoxicity investigations on nanomaterials: methods, preparation and characterization of test material, potential artifacts and limitations--many questions, some answers. , 2009, Mutation research.

[40]  Leena-Sisko Johansson,et al.  Reproducible XPS on biopolymers: cellulose studies , 2004 .

[41]  W. Cox,et al.  Rheology of Polymer Melts—A Correlation of Dynamic and Steady Flow Measurements , 1959 .

[42]  Zhiqiang Fang,et al.  A Tunable Photoluminescent Composite of Cellulose Nanofibrils and CdS Quantum Dots , 2016, Nanomaterials.

[43]  M. Rutland,et al.  Direct surface force measurements of polyelectrolyte multilayer films containing nanocrystalline cellulose. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[44]  S. Eichhorn,et al.  Stress-transfer in microfibrillated cellulose reinforced poly(lactic acid) composites using Raman spectroscopy , 2012 .

[45]  K. Gao,et al.  Cellulose nanofibril based graft conjugated polymer films act as a chemosensor for nitroaromatic. , 2014, Carbohydrate polymers.

[46]  Per Tomas Larsson,et al.  Assignment of non-crystalline forms in cellulose I by CP/MAS 13C NMR spectroscopy , 1998 .

[47]  I. Gofman,et al.  Anisotropic swelling and mechanical behavior of composite bacterial cellulose-poly(acrylamide or acrylamide-sodium acrylate) hydrogels. , 2010, Journal of the mechanical behavior of biomedical materials.

[48]  Tao Zhang,et al.  Hydrolysis of cellulose into glucose over carbons sulfonated at elevated temperatures. , 2010, Chemical communications.

[49]  R. Reiner,et al.  Cellulose I crystallinity determination using FT–Raman spectroscopy: univariate and multivariate methods , 2010 .

[50]  J. Seppälä,et al.  Nanofibrillated cellulose/carboxymethyl cellulose composite with improved wet strength , 2013, Cellulose.

[51]  Hedwig M Braakhuis,et al.  Physicochemical characteristics of nanomaterials that affect pulmonary inflammation , 2014, Particle and Fibre Toxicology.

[52]  E. Ureña-Benavides,et al.  Rheology and Phase Behavior of Lyotropic Cellulose Nanocrystal Suspensions , 2011 .

[53]  Brian Herman,et al.  Quantitative Fluorescence Microscopy , 2000, Fluorescence Microscopy.

[54]  K. Oksman,et al.  Dry-Spun Single-Filament Fibers Comprising Solely Cellulose Nanofibers from Bioresidue. , 2015, ACS applied materials & interfaces.

[55]  D. Gray,et al.  Surface grafting of cellulose nanocrystals with poly(ethylene oxide) in aqueous media. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[56]  João Paulo Teixeira,et al.  Nanomaterials Versus Ambient Ultrafine Particles: An Opportunity to Exchange Toxicology Knowledge , 2017, Environmental health perspectives.

[57]  L. Mattoso,et al.  Cellulose nanofibers from curaua fibers , 2010 .

[58]  Alexandra Kroll,et al.  Interference of engineered nanoparticles with in vitro toxicity assays , 2012, Archives of Toxicology.

[59]  R. Venditti,et al.  Cellulose micro‐ and nanofibrils (CMNF) manufacturing ‐ financial and risk assessment , 2018 .

[60]  Lynn A. Capadona,et al.  A versatile approach for the processing of polymer nanocomposites with self-assembled nanofibre templates. , 2007, Nature nanotechnology.

[61]  I. L. Arbeloa,et al.  Distribution and orientation study of dyes intercalated into single sepiolite fibers. A confocal fluorescence microscopy approach , 2011 .

[62]  J. Bras,et al.  Production of cellulose nanofibrils: A review of recent advances , 2016 .

[63]  Yongtian Wang,et al.  Highly transparent and colour-tunable composite films with increased quantum dot loading , 2014 .

[64]  A. Gandini,et al.  Surface characterization by XPS, contact angle measurements and ToF-SIMS of cellulose fibers partially esterified with fatty acids. , 2006, Journal of colloid and interface science.

[65]  Alain Dufresne,et al.  Thermoplastic nanocomposites filled with wheat straw cellulose whiskers. Part I: Processing and mechanical behavior , 1996 .

[66]  Keiji Tanaka,et al.  Fluorescence behavior of dyes in thin films of various polymers , 2012 .

[67]  Yafang Yin,et al.  Effects of ultrasonic treatment during acid hydrolysis on the yield, particle size and structure of cellulose nanocrystals. , 2016, Carbohydrate polymers.

[68]  Akira Isogai,et al.  Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. , 2007, Biomacromolecules.

[69]  M. Itskov,et al.  Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. , 2016, Soft matter.

[70]  M. Moniatte,et al.  Surface charge of polymer coated SPIONs influences the serum protein adsorption, colloidal stability and subsequent cell interaction in vitro. , 2013, Nanoscale.

[71]  A. Dufresne,et al.  Comprehensive morphological and structural investigation of cellulose I and II nanocrystals prepared by sulphuric acid hydrolysis , 2016 .

[72]  H. Bizot,et al.  Effect of xyloglucan molar mass on its assembly onto the cellulose surface and its enzymatic susceptibility. , 2017, Carbohydrate polymers.

[73]  Akihiko Takegawa,et al.  A facile preparation of composites composed of cellulose and polymeric ionic liquids by in situ polymerization of ionic liquids having acrylate groups , 2009 .

[74]  H. Norppa,et al.  Visualization of Nanofibrillar Cellulose in Biological Tissues Using a Biotinylated Carbohydrate Binding Module of β-1,4-Glycanase. , 2015, Chemical research in toxicology.

[75]  B. Nidetzky,et al.  Visualizing cellulase activity , 2013, Biotechnology and bioengineering.

[76]  L. Mattoso,et al.  Cellulose micro/nanofibres from Eucalyptus kraft pulp: preparation and properties. , 2012, Carbohydrate polymers.

[77]  David M. Brown,et al.  Proinflammogenic Effects of Low-Toxicity and Metal Nanoparticles In Vivo and In Vitro: Highlighting the Role of Particle Surface Area and Surface Reactivity , 2007, Inhalation toxicology.

[78]  Dieter Klemm,et al.  Nanocelluloses: a new family of nature-based materials. , 2011, Angewandte Chemie.

[79]  E. Kumacheva,et al.  Structure and properties of composite films formed by cellulose nanocrystals and charged latex nanoparticles. , 2015, Nanoscale.

[80]  Chao‐Jun Li,et al.  Cellulose Nanocrystals Incorporating Fluorescent Methylcoumarin Groups , 2013 .

[81]  R. Atalla,et al.  Carbon-13 NMR spectra of cellulose polymorphs , 1980 .

[82]  D. Ingber,et al.  Microfluidic organs-on-chips , 2014, Nature Biotechnology.

[83]  J. Catchmark,et al.  Microtubule asters as templates for nanomaterials assembly , 2012, Journal of biological engineering.

[84]  D. Gray,et al.  Chiral Nematic Structure of Cellulose Nanocrystal Suspensions and Films; Polarized Light and Atomic Force Microscopy , 2015, Materials.

[85]  R. Pelton,et al.  Synergistic Stabilization of Emulsions and Emulsion Gels with Water-Soluble Polymers and Cellulose Nanocrystals , 2015 .

[86]  Seung‐Hwan Lee,et al.  Relationship between aspect ratio and suspension viscosity of wood cellulose nanofibers , 2014 .

[87]  I. Turchin Methods of biomedical optical imaging: from subcellular structures to tissues and organs , 2016 .

[88]  A. Gandini,et al.  The Surface and In-Depth Modification of Cellulose Fibers , 2015 .

[89]  Feng Jiang,et al.  Chemically and mechanically isolated nanocellulose and their self-assembled structures. , 2013, Carbohydrate polymers.

[90]  A. Papageorgiou,et al.  Strength and Water Interactions of Cellulose I Filaments Wet-Spun from Cellulose Nanofibril Hydrogels , 2016, Scientific Reports.

[91]  Mark T. McDermott,et al.  Adhesive surface interactions of cellulose nanocrystals from different sources , 2012, Journal of Materials Science.

[92]  J. Simonsen,et al.  Impacts of chemical modification on the toxicity of diverse nanocellulose materials to developing zebrafish , 2016, Cellulose.

[93]  J. Moran‐Mirabal,et al.  Fluorescent labeling and characterization of cellulose nanocrystals with varying charge contents. , 2013, Biomacromolecules.

[94]  J. Dorgan,et al.  Single-step method for the isolation and surface functionalization of cellulosic nanowhiskers. , 2009, Biomacromolecules.

[95]  E. Bonnin,et al.  Coloured Semi‐reflective Thin Films for Biomass‐hydrolyzing Enzyme Detection , 2011, Advanced materials.

[96]  L. Heux,et al.  Nonflocculating and Chiral-Nematic Self-ordering of Cellulose Microcrystals Suspensions in Nonpolar Solvents , 2000 .

[97]  Kurt I Anderson,et al.  Imaging molecular dynamics in vivo – from cell biology to animal models , 2011, Journal of Cell Science.

[98]  W. Winter,et al.  Nanocomposites of Cellulose Acetate Butyrate Reinforced with Cellulose Nanocrystals , 2002 .

[99]  I. Wolff,et al.  Rapid Estimation of Dialdehyde Content of Periodate Oxystarch through Quantitative Alkali Consumption , 1955 .

[100]  R. Newman Estimation of the lateral dimensions of cellulose crystallites using 13C NMR signal strengths. , 1999, Solid state nuclear magnetic resonance.

[101]  Craig A. Poland,et al.  Asbestos, carbon nanotubes and the pleural mesothelium: a review of the hypothesis regarding the role of long fibre retention in the parietal pleura, inflammation and mesothelioma , 2010, Particle and Fibre Toxicology.

[102]  Honglai Liu,et al.  Chemistry and Applications of Nanocrystalline Cellulose and its Derivatives: a Nanotechnology Perspective , 2011 .

[103]  P. Aken,et al.  Sample Preparation Techniques for Transmission Electron Microscopy , 2012 .

[104]  M. Bercea,et al.  Shear dynamics of aqueous suspensions of cellulose whiskers , 2000 .

[105]  M. Kamal,et al.  Effect of surface energy on dispersion and mechanical properties of polymer/nanocrystalline cellulose nanocomposites. , 2013, Biomacromolecules.

[106]  Dana Loomis,et al.  Work in Brief , 2006 .

[107]  Hans Leuenberger,et al.  Atmospheric spray-freeze drying: a suitable alternative in freeze-drying technology , 1991 .

[108]  A. Leitner,et al.  Detection of Fluorescently Labeled Microparticles in Blood , 2005, Blood Purification.

[109]  E. Kumacheva,et al.  Ion-Mediated Gelation of Aqueous Suspensions of Cellulose Nanocrystals. , 2015, Biomacromolecules.

[110]  T. G. M. Ven,et al.  Highly charged nanocrystalline cellulose and dicarboxylated cellulose from periodate and chlorite oxidized cellulose fibers , 2013, Cellulose.

[111]  Raed Hashaikeh,et al.  Modified cellulose morphologies and its composites; SEM and TEM analysis. , 2011, Micron.

[112]  Qi Zhou,et al.  Water redispersible cellulose nanofibrils adsorbed with carboxymethyl cellulose , 2014, Cellulose.

[113]  H. Brumer,et al.  Friction and forces between cellulose model surfaces: a comparison. , 2006, Journal of colloid and interface science.

[114]  R. Venditti,et al.  Poly(N-isopropylacrylamide) brushes grafted from cellulose nanocrystals via surface-initiated single-electron transfer living radical polymerization. , 2010, Biomacromolecules.

[115]  Ashlie Martini,et al.  Cellulose nanomaterials review: structure, properties and nanocomposites. , 2011, Chemical Society reviews.

[116]  Shuping Dong,et al.  Analysis of the sulfuric acid hydrolysis of wood pulp for cellulose nanocrystal production: A central composite design study , 2016 .

[117]  J. Seppälä,et al.  Ductile nanocellulose-based films with high stretchability and tear resistance , 2015 .

[118]  R. Reiner,et al.  Probing crystallinity of never-dried wood cellulose with Raman spectroscopy , 2016, Cellulose.

[119]  M. Kirsch‐Volders,et al.  Adaptations of the in vitro MN assay for the genotoxicity assessment of nanomaterials. , 2011, Mutagenesis.

[120]  S. Hill Inductively coupled plasma spectrometry and its applications , 2006 .

[121]  Z. Cai,et al.  Influence of drying method on the material properties of nanocellulose I: thermostability and crystallinity , 2013, Cellulose.

[122]  W. Thielemans,et al.  Surface modification of cellulose nanocrystals. , 2014, Nanoscale.

[123]  M. Roman Toxicity of Cellulose Nanocrystals: A Review , 2015 .

[124]  L. Heux,et al.  Solid-state 13C NMR study of na-cellulose complexes. , 2007, Biomacromolecules.

[125]  D. Argyropoulos,et al.  Regular linking of cellulose nanocrystals via click chemistry: synthesis and formation of cellulose nanoplatelet gels. , 2010, Biomacromolecules.

[126]  J. Putaux,et al.  Preparation by grafting onto, characterization, and properties of thermally responsive polymer-decorated cellulose nanocrystals. , 2010, Biomacromolecules.

[127]  H. Norppa,et al.  Genotoxic and inflammatory effects of nanofibrillated cellulose in murine lungs , 2017, Mutagenesis.

[128]  C. Endes,et al.  A critical review of the current knowledge regarding the biological impact of nanocellulose , 2016, Journal of Nanobiotechnology.

[129]  D. Mcclements,et al.  The Role of the Food Matrix and Gastrointestinal Tract in the assessment of biological properties of ingested engineered nanomaterials (iENMs): State of the science and knowledge gaps. , 2016, NanoImpact.

[130]  C. Daneault,et al.  Spectroscopic characterization of oxidized nanocellulose grafted with fluorescent amino acids , 2011 .

[131]  A. Ragauskas,et al.  Imaging cellulose fibre interfaces with fluorescence microscopy and resonance energy transfer , 2007 .

[132]  J. Bras,et al.  Surface cationized cellulose nanofibrils for the production of contact active antimicrobial surfaces. , 2016, Carbohydrate polymers.

[133]  R. Atalla,et al.  Native Cellulose: A Composite of Two Distinct Crystalline Forms , 1984, Science.

[134]  X. Zhang,et al.  Biomimetic mineralization synthesis of calcium-deficient carbonate-containing hydroxyapatite in a three-dimensional network of bacterial cellulose , 2009 .

[135]  L. Lucia,et al.  Cellulose nanocrystals: chemistry, self-assembly, and applications. , 2010, Chemical reviews.

[136]  W. S. Teo,et al.  Highly Biodegradable and Tough Polylactic Acid–Cellulose Nanocrystal Composite , 2017 .

[137]  A. Gutleb,et al.  Potential of coculture in vitro models to study inflammatory and sensitizing effects of particles on the lung. , 2011, Toxicology in vitro : an international journal published in association with BIBRA.

[138]  R. Atalla,et al.  The role of solid state 13C NMR spectroscopy in studies of the nature of native celluloses. , 1999, Solid state nuclear magnetic resonance.

[139]  T. Lindström,et al.  On the charge stoichiometry upon adsorption of a cationic polyelectrolyte on cellulosic materials , 1987 .

[140]  R. Narain,et al.  Covalent and Noncovalent Bioconjugation Strategies , 2014 .

[141]  Sandor Balog,et al.  Avoiding drying-artifacts in transmission electron microscopy: Characterizing the size and colloidal state of nanoparticles , 2015, Scientific Reports.

[142]  C. Recordati,et al.  Organ Distribution and Bone Tropism of Cellulose Nanocrystals in Living Mice. , 2015, Biomacromolecules.

[143]  J. V. Edwards,et al.  Peptide conjugated cellulose nanocrystals with sensitive human neutrophil elastase sensor activity , 2013, Cellulose.

[144]  K. Tam,et al.  Aqueous synthesis and biostabilization of CdS@ZnS quantum dots for bioimaging applications , 2015 .

[145]  D G Gray,et al.  Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. , 1992, International journal of biological macromolecules.

[146]  A. Varma,et al.  Oxidation of cellulose under controlled conditions , 2002 .

[147]  Biao Huang,et al.  Synthesis of pH-Sensitive Fluorescein Grafted Cellulose Nanocrystals with an Amino Acid Spacer , 2016 .

[148]  H. Rietveld A profile refinement method for nuclear and magnetic structures , 1969 .

[149]  D. Gardner,et al.  Drying cellulose nanofibrils: in search of a suitable method , 2012, Cellulose.

[150]  E. Cranston,et al.  The role of hydrogen bonding in non-ionic polymer adsorption to cellulose nanocrystals and silica colloids , 2017 .

[151]  A. J. Michell Second-derivative FTIR spectra of native celluloses from Valonia and tunicin , 1993 .

[152]  Alain Dufresne,et al.  Nanocellulose: From Nature to High Performance Tailored Materials , 2012 .

[153]  R. Pelton,et al.  One-Pot Water-Based Hydrophobic Surface Modification of Cellulose Nanocrystals Using Plant Polyphenols , 2017 .

[154]  K. Ho,et al.  Monitoring the 3D nanostructures of bulk heterojunction polymer solar cells using confocal lifetime imaging. , 2010, Analytical chemistry.

[155]  Á. Barna,et al.  Preparation Techniques for Transmission Electron Microscopy , 2008 .

[156]  Ling Zhang,et al.  Synthesis and Photophysical Behavior of Pyrene-Bearing Cellulose Nanocrystals for Fe3+ Sensing , 2012 .

[157]  Investigation into the deformation of carbon nanotubes and their composites through the use of Raman spectroscopy , 2001 .

[158]  G. Hieftje,et al.  Simultaneous Measurement of Spatially Resolved Electron Temperatures. Electron Number Densities and Gas Temperatures by Laser Light Scattering from the ICP , 1989 .

[159]  Gregory T. Schueneman,et al.  Overview of Cellulose Nanomaterials, Their Capabilities and Applications , 2016 .

[160]  Leila Jowkarderis,et al.  Intrinsic viscosity of aqueous suspensions of cellulose nanofibrils , 2014, Cellulose.

[161]  Audrey Moores,et al.  Cellulose nanocrystallites as an efficient support for nanoparticles of palladium: application for catalytic hydrogenation and Heck coupling under mild conditions , 2011 .

[162]  D. Gray,et al.  Chiral nematic phase formation by aqueous suspensions of cellulose nanocrystals prepared by oxidation with ammonium persulfate , 2014, Cellulose.

[163]  W. Thielemans,et al.  Cellulose nanocrystals grafted with polystyrene chains through surface-initiated atom transfer radical polymerization (SI-ATRP). , 2009, Langmuir : the ACS journal of surfaces and colloids.

[164]  Qinglin Wu,et al.  Cellulose Nanoparticles: Structure–Morphology–Rheology Relationships , 2015 .

[165]  S. Eichhorn,et al.  Interfacial energy dissipation in a cellulose nanowhisker composite , 2011, Nanotechnology.

[166]  J. Araki,et al.  Steric Stabilization of a Cellulose Microcrystal Suspension by Poly(ethylene glycol) Grafting , 2001 .

[167]  Ping-Chang Lin,et al.  Techniques for physicochemical characterization of nanomaterials. , 2014, Biotechnology advances.

[168]  M. Méthot,et al.  Critical discussion of light scattering and microscopy techniques for CNC particle sizing , 2014 .

[169]  Vicki Stone,et al.  Intracellular imaging of nanoparticles: Is it an elemental mistake to believe what you see? , 2010, Particle and Fibre Toxicology.

[170]  R. Baughman,et al.  A laser Raman study of the stress dependence of vibrational frequencies of a monocrystalline polydiacetylene , 1977 .

[171]  Takeshi Okano,et al.  Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose , 1998 .

[172]  S. Eichhorn,et al.  Orientation and deformation of wet-stretched all-cellulose nanocomposites , 2013, Journal of Materials Science.

[173]  Marielle Henriksson,et al.  Cellulose nanopaper structures of high toughness. , 2008, Biomacromolecules.

[174]  Mingguo Ma,et al.  Comparison of the effects of microcrystalline cellulose and cellulose nanocrystals on Fe3O4/C nanocomposites , 2015 .

[175]  Joshua D. Kittle,et al.  Equilibrium water contents of cellulose films determined via solvent exchange and quartz crystal microbalance with dissipation monitoring. , 2011, Biomacromolecules.

[176]  C. E. Childs,et al.  A direct comparison of the Pregl, Dumas, Perkin-Elmer, and Hewlett-Packard(F&M) carbon-hydrogen-nitrogen procedures☆ , 1970 .

[177]  Mark F. Davis,et al.  Measuring the crystallinity index of cellulose by solid state 13C nuclear magnetic resonance , 2009 .

[178]  J. Laine,et al.  Specific water uptake of thin films from nanofibrillar cellulose , 2013 .

[179]  B. Cathala,et al.  Kinetic aspects of the adsorption of xyloglucan onto cellulose nanocrystals. , 2015, Soft matter.

[180]  E. Ureña-Benavides,et al.  Static light scattering of triaxial nanoparticle suspensions in the Rayleigh-Gans-Debye regime: application to cellulose nanocrystals , 2012 .

[181]  L. Lucia,et al.  Polymerization topochemistry of cellulose nanocrystals: a function of surface dehydration control. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[182]  L. Bergström,et al.  Understanding nanocellulose chirality and structure–properties relationship at the single fibril level , 2015, Nature Communications.

[183]  H. Jameel,et al.  Conversion Economics of Forest Biomaterials: Risk and Financial Analysis of CNC Manufacturing , 2017 .

[184]  Per Tomas Larsson,et al.  Topochemical acetylation of cellulose nanopaper structures for biocomposites: mechanisms for reduced water vapour sorption , 2014, Cellulose.

[185]  D. Gray,et al.  Smooth model cellulose I surfaces from nanocrystal suspensions , 2003 .

[186]  Qinglin Wu,et al.  Self-assembling behavior of cellulose nanoparticles during freeze-drying: effect of suspension concentration, particle size, crystal structure, and surface charge. , 2013, Biomacromolecules.

[187]  Magnus Norgren,et al.  The build-up of polyelectrolyte multilayers of microfibrillated cellulose and cationic polyelectrolytes. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[188]  S. Hekmatimoghaddam,et al.  Antimicrobial activity of nanocellulose conjugated with allicin and lysozyme , 2013, Cellulose.

[189]  Changfeng Wu,et al.  Chiral fluorescent films of gold nanoclusters and photonic cellulose with modulated fluorescence emission , 2016 .

[190]  Wenshuai Chen,et al.  Revealing the structures of cellulose nanofiber bundles obtained by mechanical nanofibrillation via TEM observation. , 2015, Carbohydrate polymers.

[191]  D. Briggs,et al.  Handbook of x-ray and ultraviolet photoelectron spectroscopy , 1977 .

[192]  O. Rojas,et al.  Nanofiber composites of polyvinyl alcohol and cellulose nanocrystals: manufacture and characterization. , 2010, Biomacromolecules.

[193]  A. Isogai,et al.  Bulky quaternary alkylammonium counterions enhance the nanodispersibility of 2,2,6,6-tetramethylpiperidine-1-oxyl-oxidized cellulose in diverse solvents. , 2014, Biomacromolecules.

[194]  J. Bouchard,et al.  Dispersibility in water of dried nanocrystalline cellulose. , 2012, Biomacromolecules.

[195]  J. Ede,et al.  Establishing the safety of novel bio-based cellulose nanomaterials for commercialization , 2017 .

[196]  A. Ragauskas,et al.  A novel FRET approach for in situ investigation of cellulase–cellulose interaction , 2010, Analytical and bioanalytical chemistry.

[197]  D. Argyropoulos,et al.  Production of cellulose nanocrystals using hydrobromic acid and click reactions on their surface , 2011, Journal of Materials Science.

[198]  J. Sirviö,et al.  Phosphonated nanocelluloses from sequential oxidative-reductive treatment-Physicochemical characteristics and thermal properties. , 2015, Carbohydrate polymers.

[199]  Christoph Weder,et al.  Stress-transfer in anisotropic and environmentally adaptive cellulose whisker nanocomposites. , 2010, Biomacromolecules.

[200]  T. Nishino,et al.  All-Cellulose Composite , 2004 .

[201]  E. J. Foster,et al.  Investigating the interaction of cellulose nanofibers derived from cotton with a sophisticated 3D human lung cell coculture. , 2011, Biomacromolecules.

[202]  Seong H. Kim,et al.  Characterization of crystalline cellulose in biomass: Basic principles, applications, and limitations of XRD, NMR, IR, Raman, and SFG , 2013, Korean Journal of Chemical Engineering.

[203]  R. Lahiji,et al.  Suspension viscosities and shape parameter of cellulose nanocrystals (CNC) , 2011 .

[204]  E. Cranston,et al.  Benchmarking Cellulose Nanocrystals: From the Laboratory to Industrial Production. , 2017, Langmuir : the ACS journal of surfaces and colloids.

[205]  S. Prévost,et al.  Two-Dimensional Aggregation and Semidilute Ordering in Cellulose Nanocrystals. , 2016, Langmuir : the ACS journal of surfaces and colloids.

[206]  H. L. Cox The elasticity and strength of paper and other fibrous materials , 1952 .

[207]  Peizhi Liu,et al.  Ultralight carbon aerogel from nanocellulose as a highly selective oil absorption material , 2015, Cellulose.

[208]  E. J. Foster,et al.  Bionanocomposites: differential effects of cellulose nanocrystals on protein diblock copolymers. , 2013, Biomacromolecules.

[209]  A. Isogai,et al.  Relationship between length and degree of polymerization of TEMPO-oxidized cellulose nanofibrils. , 2012, Biomacromolecules.

[210]  Paul H. Maupin,et al.  Synthesis of imidazolium salts and their application in epoxy montmorillonite nanocomposites , 2006 .

[211]  A. Carlmark,et al.  Preparation and characterization of functionalized cellulose nanocrystals. , 2015, Carbohydrate polymers.

[212]  T. Peijs,et al.  Cellulose Biocomposites—From Bulk Moldings to Nanostructured Systems , 2010 .

[213]  L. Heux,et al.  Gas-phase esterification of cellulose nanocrystal aerogels for colloidal dispersion in apolar solvents , 2013 .

[214]  Gunnar Westman,et al.  Cationic surface functionalization of cellulose nanocrystals , 2008 .

[215]  R. Marchessault,et al.  Infrared spectra of crystalline polysaccharides. I. Hydrogen bonds in native celluloses , 1959 .

[216]  D. Gray,et al.  Estimation of the surface sulfur content of cellulose nanocrystals prepared by sulfuric acid hydrolysis , 2013, Cellulose.

[217]  Richard C. M. Yam,et al.  Novel all-cellulose ecocomposites prepared in ionic liquids , 2009 .

[218]  Hans Arwin,et al.  Determination of Young's modulus for nanofibrillated cellulose multilayer thin films using buckling mechanics. , 2011, Biomacromolecules.

[219]  Lars Wågberg,et al.  Cellulosic nanofibrils from eucalyptus, acacia and pine fibers , 2014 .

[220]  E. Kumacheva,et al.  Coassembly of nanorods and nanospheres in suspensions and in stratified films. , 2015, Angewandte Chemie.

[221]  Robert Landsiedel,et al.  Nanomaterial categorization for assessing risk potential to facilitate regulatory decision-making. , 2015, ACS nano.

[222]  G. Wnek,et al.  Stimuli-Responsive and Mechanically-Switchable Electrospun Composites , 2012 .

[223]  Yangbing Wen,et al.  Adsorption of polyethylene glycol (PEG) onto cellulose nano-crystals to improve its dispersity. , 2015, Carbohydrate polymers.

[224]  M. Alexander,et al.  Characterisation of amino acid modified cellulose surfaces using ToF-SIMS and XPS , 2010 .

[225]  L. Piergiovanni,et al.  Comparison of cellulose nanocrystals obtained by sulfuric acid hydrolysis and ammonium persulfate, to be used as coating on flexible food-packaging materials , 2016, Cellulose.

[226]  S. Nonell,et al.  Fastest molecular photochromic switches based on nanosecond isomerizing benzothiazolium azophenolic salts , 2014 .

[227]  Eero Kontturi,et al.  Cellulose--model films and the fundamental approach. , 2006, Chemical Society reviews.

[228]  S. Eichhorn,et al.  Discrimination of matrix–fibre interactions in all-cellulose nanocomposites , 2010 .

[229]  J. Bras,et al.  Charge density modification of carboxylated cellulose nanocrystals for stable silver nanoparticles suspension preparation , 2015, Journal of Nanoparticle Research.

[230]  A. R. Stokes,et al.  The diffraction of X rays by distorted crystal aggregates - I , 1944 .

[231]  A. Mandal,et al.  Isolation of nanocellulose from waste sugarcane bagasse (SCB) and its characterization , 2011 .

[232]  P. Chang,et al.  Hydrophobic modification of cellulose nanocrystal via covalently grafting of castor oil , 2013, Cellulose.

[233]  Zhiyong Cai,et al.  A comparative study of cellulose nanofibrils disintegrated via multiple processing approaches. , 2013, Carbohydrate polymers.

[234]  D. Rentsch,et al.  Preparation and characterization of water-redispersible nanofibrillated cellulose in powder form , 2010 .

[235]  D. Gray,et al.  Dispersion of cellulose nanocrystals in polar organic solvents , 2007 .

[236]  S. Hatzikiriakos,et al.  Rheology of nanocrystalline cellulose aqueous suspensions. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[237]  L. Bergström,et al.  Multicolor fluorescent labeling of cellulose nanofibrils by click chemistry. , 2015, Biomacromolecules.

[238]  Satinder Kaur Brar,et al.  Intertechnique Comparisons for Nanoparticle Size Measurements and Shape Distribution , 2016 .

[239]  E. J. Foster,et al.  Elucidating the Potential Biological Impact of Cellulose Nanocrystals , 2016 .

[240]  Yong Bum Park,et al.  Quantification of crystalline cellulose in lignocellulosic biomass using sum frequency generation (SFG) vibration spectroscopy and comparison with other analytical methods. , 2012, Carbohydrate polymers.

[241]  Harekrushna Sahoo Fluorescent labeling techniques in biomolecules: a flashback , 2012 .

[242]  L. Johnston,et al.  Correlating Cellulose Nanocrystal Particle Size and Surface Area. , 2016, Langmuir : the ACS journal of surfaces and colloids.

[243]  Y. Boluk,et al.  Analysis of cellulose nanocrystal rod lengths by dynamic light scattering and electron microscopy , 2013, Journal of Nanoparticle Research.

[244]  G. Calligaris,et al.  Theoretical and experimental developments for accurate determination of crystallinity of cellulose I materials , 2011 .

[245]  Iseult Lynch,et al.  Minimal analytical characterization of engineered nanomaterials needed for hazard assessment in biological matrices , 2011, Nanotoxicology.

[246]  J. Bras,et al.  Water redispersible dried nanofibrillated cellulose by adding sodium chloride. , 2012, Biomacromolecules.

[247]  Paul H. Maupin,et al.  Revealing the interface in polymer nanocomposites. , 2011, ACS nano.

[248]  S. Ralph,et al.  Estimation of cellulose crystallinity of lignocelluloses using near-IR FT-Raman spectroscopy and comparison of the Raman and Segal-WAXS methods. , 2013, Journal of agricultural and food chemistry.

[249]  T. Shaheen,et al.  Advancement in conductive cotton fabrics through in situ polymerization of polypyrrole-nanocellulose composites. , 2016, Carbohydrate polymers.

[250]  Steve Smith,et al.  DOPI and PALM imaging of single carbohydrate binding modules bound to cellulose nanocrystals , 2011, BiOS.

[251]  A. Dufresne,et al.  Different preparation methods and properties of nanostructured cellulose from various natural resources and residues: a review , 2015, Cellulose.

[252]  T. Lindström,et al.  Titrimetric methods for the determination of surface and total charge of functionalized nanofibrillated/microfibrillated cellulose (NFC/MFC) , 2013, Cellulose.

[253]  Ken Donaldson,et al.  Use of silver nanowires to determine thresholds for fibre length-dependent pulmonary inflammation and inhibition of macrophage migration in vitro , 2012, Particle and Fibre Toxicology.

[254]  Audrey Moores,et al.  Transmission Electron Microscopy for the Characterization of Cellulose Nanocrystals , 2015 .

[255]  Peter Josefsson,et al.  Nanoscale cellulose films with different crystallinities and mesostructures--their surface properties and interaction with water. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[256]  E. J. Foster,et al.  Melt processing of polyamide 12 and cellulose nanocrystals nanocomposites , 2015 .

[257]  Hicham Fenniri,et al.  Widespread Nanoparticle-Assay Interference: Implications for Nanotoxicity Testing , 2014, PloS one.

[258]  R. Pelton,et al.  Tuning cellulose nanocrystal gelation with polysaccharides and surfactants. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[259]  E. Ganjian,et al.  Manufacturing of bacterial nano-cellulose reinforced fiber−cement composites , 2015 .

[260]  Youssef Habibi,et al.  Key advances in the chemical modification of nanocelluloses. , 2014, Chemical Society reviews.

[261]  T. Iwata,et al.  Structure and mechanical properties of wet-spun fibers made from natural cellulose nanofibers. , 2011, Biomacromolecules.

[262]  Shannon M. Notley,et al.  Surface forces measurements of spin-coated cellulose thin films with different crystallinity. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[263]  Qingxi Hou,et al.  Sodium periodate oxidation of cellulose nanocrystal and its application as a paper wet strength additive , 2015, Cellulose.

[264]  Kristiina Oksman,et al.  On the use of nanocellulose as reinforcement in polymer matrix composites , 2014 .

[265]  Qianqian Wang,et al.  Tailoring the yield and characteristics of wood cellulose nanocrystals (CNC) using concentrated acid hydrolysis , 2015, Cellulose.

[266]  E. Cranston,et al.  Cellulose nanocrystal interactions probed by thin film swelling to predict dispersibility. , 2016, Nanoscale.

[267]  D. Gray,et al.  Atomic force microscopy and transmission electron microscopy of cellulose from Micrasterias denticulata; evidence for a chiral helical microfibril twist , 1997, Cellulose.

[268]  G. Sèbe,et al.  A versatile method for the surface tailoring of cellulose nanocrystal building blocks by acylation with functional vinyl esters. , 2017, Carbohydrate polymers.

[269]  S. B. Lindström,et al.  Colloidal stability of aqueous nanofibrillated cellulose dispersions. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[270]  Lina Zhang,et al.  Extraordinary reinforcement effect of three-dimensionally nanoporous cellulose gels in poly(ε-caprolactone) bionanocomposites. , 2014, ACS applied materials & interfaces.

[271]  M. Brochier-Salon,et al.  Nanofibrillated cellulose surface grafting in ionic liquid , 2012 .

[272]  S. Eichhorn,et al.  Quantification of the degree of mixing of cellulose nanocrystals in thermoplastics using Raman spectroscopy , 2016 .

[273]  D. Gray,et al.  Effect of Counterions on Ordered Phase Formation in Suspensions of Charged Rodlike Cellulose Crystallites , 1997 .

[274]  Reinhard Kreiling,et al.  A decision-making framework for the grouping and testing of nanomaterials (DF4nanoGrouping). , 2015, Regulatory toxicology and pharmacology : RTP.

[275]  J. Bouchard,et al.  Auto-catalyzed acidic desulfation of cellulose nanocrystals , 2014 .

[276]  M. Méthot,et al.  Effect of oligosaccharide deposition on the surface of cellulose nanocrystals as a function of acid hydrolysis temperature , 2016, Cellulose.

[277]  Akira Isogai,et al.  Individualization of nano-sized plant cellulose fibrils by direct surface carboxylation using TEMPO catalyst under neutral conditions. , 2009, Biomacromolecules.

[278]  W. Wan,et al.  The polyvinyl alcohol-bacterial cellulose system as a new nanocomposite for biomedical applications. , 2006, Journal of biomedical materials research. Part B, Applied biomaterials.

[279]  D. Argyropoulos,et al.  Photoresponsive Cellulose Nanocrystals , 2011 .

[280]  J. Luong,et al.  Effect of surface charge on the cellular uptake and cytotoxicity of fluorescent labeled cellulose nanocrystals. , 2010, ACS applied materials & interfaces.

[281]  A. G. Assaf,et al.  A New Interpretation of the Cellulose-Water Adsorption Isotherm and Data Concerning the Effect of Swelling and Drying on the Colloidal Surface of Cellulose1,2 , 1944 .

[282]  A. S. Benight,et al.  Cellulose/DNA hybrid nanomaterials. , 2009, Biomacromolecules.

[283]  Stephanie Beck,et al.  Controlling the reflection wavelength of iridescent solid films of nanocrystalline cellulose. , 2011, Biomacromolecules.

[284]  B. Meunier,et al.  Modification of the thiourea linkage of a fluorescein-oligonucleotide conjugate to a guanidinium motif during ammonia deprotection. , 1998, Bioconjugate chemistry.

[285]  K. Stinson-Bagby,et al.  Effective cellulose nanocrystal imaging using transmission electron microscopy. , 2018, Carbohydrate polymers.

[286]  Siqi Huan,et al.  Electrospun nanofibrous composites of polystyrene and cellulose nanocrystals: manufacture and characterization , 2015 .

[287]  J. Lewis,et al.  3D‐Printing of Lightweight Cellular Composites , 2014, Advanced materials.

[288]  S. Eichhorn,et al.  Surface only modification of bacterial cellulose nanofibres with organic acids , 2011 .

[289]  M. Vignon,et al.  TEMPO-mediated surface oxidation of cellulose whiskers , 2006 .

[290]  Juan Zhou,et al.  Synthesis of multifunctional cellulose nanocrystals for lectin recognition and bacterial imaging. , 2015, Biomacromolecules.

[291]  J. Bras,et al.  Effect of variable aminoalkyl chains on chemical grafting of cellulose nanofiber and their antimicrobial activity. , 2017, Materials science & engineering. C, Materials for biological applications.

[292]  Qinglin Wu,et al.  Cationic surface modification of cellulose nanocrystals: Toward tailoring dispersion and interface in carboxymethyl cellulose films , 2016 .

[293]  E. J. Foster,et al.  An in vitro testing strategy towards mimicking the inhalation of high aspect ratio nanoparticles , 2014, Particle and Fibre Toxicology.

[294]  M. Aurousseau,et al.  Effect of pH and ionic strength on the electrical charge and particle size distribution of starch nanocrystal suspensions , 2015 .

[295]  Michael T. Postek,et al.  Development of the metrology and imaging of cellulose nanocrystals , 2011 .

[296]  D. Tyler,et al.  Stimuli-Responsive Polymer Nanocomposites Inspired by the Sea Cucumber Dermis , 2008, Science.

[297]  M. Vinardell,et al.  Mechanisms Underlying Cytotoxicity Induced by Engineered Nanomaterials: A Review of In Vitro Studies , 2014, Nanomaterials.

[298]  J. Putaux,et al.  The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. , 2008, Biomacromolecules.

[299]  Y. Hsieh,et al.  Assembling and redispersibility of rice straw nanocellulose: effect of tert-butanol. , 2014, ACS applied materials & interfaces.

[300]  Y. Noguchi,et al.  Complete nanofibrillation of cellulose prepared by phosphorylation , 2017, Cellulose.

[301]  E. Lasseuguette,et al.  Grafting onto microfibrils of native cellulose , 2008 .

[302]  S. Kelley,et al.  Development of Langmuir-Schaeffer cellulose nanocrystal monolayers and their interfacial behaviors. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[303]  A. Larsson,et al.  Solid-state NMR to quantify surface coverage and chain length of lactic acid modified cellulose nanocrystals, used as fillers in biodegradable composites , 2015 .

[304]  Wenshuai Chen,et al.  Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments , 2011 .

[305]  S. Eichhorn,et al.  Review: Current international research into cellulosic fibres and composites , 2001 .

[306]  E. Hassan,et al.  Chemical isolation and characterization of different cellulose nanofibers from cotton stalks. , 2015, Carbohydrate polymers.

[307]  S. B. Yamaki,et al.  Spectroscopic studies of the intermolecular interactions of Congo red and tinopal CBS with modified cellulose fibers. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[308]  Krystal R. Fontenot,et al.  Human neutrophil elastase peptide sensors conjugated to cellulosic and nanocellulosic materials: part I, synthesis and characterization of fluorescent analogs , 2016, Cellulose.

[309]  Kelsey A. Potter,et al.  Curcumin-releasing mechanically adaptive intracortical implants improve the proximal neuronal density and blood-brain barrier stability. , 2014, Acta biomaterialia.

[310]  R. Linhardt,et al.  Conductive cable fibers with insulating surface prepared by coaxial electrospinning of multiwalled nanotubes and cellulose. , 2010, Biomacromolecules.

[311]  P. Lu,et al.  Preparation and characterization of cellulose nanocrystals from rice straw. , 2012, Carbohydrate polymers.

[312]  A. Isogai,et al.  Influence of TEMPO-oxidized cellulose nanofibril length on film properties. , 2013, Carbohydrate polymers.

[313]  Sabu Thomas,et al.  Handbook of Nanocellulose and Cellulose Nanocomposites , 2017 .

[314]  L. Berglund,et al.  Biomimetic polysaccharide nanocomposites of high cellulose content and high toughness. , 2007, Biomacromolecules.

[315]  Akira Isogai,et al.  Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. , 2006, Biomacromolecules.

[316]  J. Sugiyama,et al.  Combined infrared and electron diffraction study of the polymorphism of native celluloses , 1991 .

[317]  T. Elder,et al.  Highly thermal-stable and functional cellulose nanocrystals and nanofibrils produced using fully recyclable organic acids , 2016 .

[318]  J. Putaux,et al.  Surface modification of cellulose microfibrils by periodate oxidation and subsequent reductive amination with benzylamine: a topochemical study , 2014, Cellulose.

[319]  O. Barth,et al.  Negative and Positive Staining in Transmission Electron Microscopy for Virus Diagnosis , 2015 .

[320]  Akira Isogai,et al.  TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions. , 2004, Biomacromolecules.

[321]  E. W. Llewellin,et al.  The rheology of suspensions of solid particles , 2010, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[322]  O. Rojas,et al.  Enzymatic hydrolysis of native cellulose nanofibrils and other cellulose model films: effect of surface structure. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[323]  Markus J. Buehler,et al.  Current issues in research on structure–property relationships in polymer nanocomposites , 2010 .

[324]  Qinglin Wu,et al.  Cellulose nanoparticles as modifiers for rheology and fluid loss in bentonite water-based fluids. , 2015, ACS applied materials & interfaces.

[325]  S. Achilefu,et al.  Fluorescence lifetime measurements and biological imaging. , 2010, Chemical reviews.

[326]  Chao‐Jun Li,et al.  Functionalization of cellulose nanocrystal films via “thiol–ene” click reaction , 2014 .

[327]  A. Isogai,et al.  Improvement of nanodispersibility of oven-dried TEMPO-oxidized celluloses in water , 2014, Cellulose.

[328]  B. Simmons,et al.  Neutron reflectometry and QCM-D study of the interaction of cellulases with films of amorphous cellulose. , 2011, Biomacromolecules.

[329]  Kentaro Abe,et al.  Surface modification of bacterial cellulose nanofibers for property enhancement of optically transparent composites: dependence on acetyl-group DS. , 2007, Biomacromolecules.

[330]  P. Tingaut,et al.  Supramolecular structure characterization of cellulose II nanowhiskers produced by acid hydrolysis of cellulose I substrates. , 2012, Biomacromolecules.

[331]  Y. Habibi,et al.  Langmuir-Blodgett films of cellulose nanocrystals: preparation and characterization. , 2007, Journal of colloid and interface science.

[332]  Xuezhu Xu,et al.  Cellulose nanocrystals vs. cellulose nanofibrils: a comparative study on their microstructures and effects as polymer reinforcing agents. , 2013, ACS applied materials & interfaces.

[333]  M. Fujiwara,et al.  CP/MAS (13)C NMR study of cellulose and cellulose derivatives. 1. Complete assignment of the CP/MAS (13)C NMR spectrum of the native cellulose. , 2002, Journal of the American Chemical Society.

[334]  Shareen H. Doak,et al.  The 3Rs as a framework to support a 21st century approach for nanosafety assessment , 2017 .

[335]  M. Vignon,et al.  Mercerization of primary wall cellulose and its implication for the conversion of cellulose I→cellulose II , 2002 .

[336]  A. French,et al.  Cellulose polymorphy, crystallite size, and the Segal Crystallinity Index , 2013, Cellulose.

[337]  Qiang Yang,et al.  A Facile Approach for Fabricating Fluorescent Cellulose , 2010 .

[338]  K. Oksman,et al.  Orientation of cellulose nanowhiskers in polyvinyl alcohol , 2007 .

[339]  Alvaro Tejado,et al.  Films prepared from electrosterically stabilized nanocrystalline cellulose. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[340]  S. Eichhorn,et al.  Elastic modulus and stress-transfer properties of tunicate cellulose whiskers. , 2005, Biomacromolecules.

[341]  W. Ruland,et al.  X-ray determination of crystallinity and diffuse disorder scattering , 1961 .

[342]  Ke-fu Chen,et al.  Influence of binding mechanism on labeling efficiency and luminous properties of fluorescent cellulose nanocrystals. , 2017, Carbohydrate polymers.

[343]  Wadood Y. Hamad,et al.  Parameters Affecting the Chiral Nematic Phase of Nanocrystalline Cellulose Films , 2010 .

[344]  E. Cranston,et al.  Surface modification of cellulose nanocrystals with cetyltrimethylammonium bromide , 2014 .

[345]  J. Aylott,et al.  Dual fluorescent labelling of cellulose nanocrystals for pH sensing. , 2010, Chemical communications.

[346]  J. Youngblood,et al.  Green One-Pot Synthesis of Surface Hydrophobized Cellulose Nanocrystals in Aqueous Medium , 2016 .

[347]  P. Bastiaens,et al.  Fluorescence lifetime imaging microscopy: spatial resolution of biochemical processes in the cell. , 1999, Trends in cell biology.

[348]  Sara Linse,et al.  Understanding the nanoparticle–protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles , 2007, Proceedings of the National Academy of Sciences.

[349]  F. Nesslany Unscheduled DNA synthesis (UDS) test with mammalian liver cells in vivo. , 2013, Methods in molecular biology.

[350]  C. Michal,et al.  New insights into nano-crystalline cellulose structure and morphology based on solid-state NMR , 2012, Cellulose.

[351]  M. Vignon,et al.  Topochemistry of carboxylated cellulose nanocrystals resulting from TEMPO-mediated oxidation , 2005 .

[352]  A. J. Bur,et al.  Optical Probes for Monitoring Intercalation and Exfoliation in Melt‐Processed Polymer Nanocomposites , 2004 .

[353]  H. Bizot,et al.  Modulation of cellulose nanocrystals amphiphilic properties to stabilize oil/water interface. , 2012, Biomacromolecules.

[354]  Alain Dufresne,et al.  Mechanical behavior of sheets prepared from sugar beet cellulose microfibrils , 1997 .

[355]  F. Cotana,et al.  Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. , 2013, Carbohydrate polymers.

[356]  E. Cranston,et al.  Morphological and optical characterization of polyelectrolyte multilayers incorporating nanocrystalline cellulose. , 2006, Biomacromolecules.

[357]  J. Keckes,et al.  Drawing of self‐reinforced cellulose films , 2007 .

[358]  Michael E Himmel,et al.  Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance , 2010, Biotechnology for biofuels.

[359]  J. Martinho,et al.  Resonance Energy Transfer in Polymer Nanodomains , 2008 .

[360]  M. Schülein,et al.  Fluorescent cellulose microfibrils as substrate for the detection of cellulase activity. , 2003, Biomacromolecules.

[361]  Todd Hoare,et al.  Review of Hydrogels and Aerogels Containing Nanocellulose , 2017 .

[362]  P. Deb,et al.  Isolation and characterization of crystalline, autofluorescent, cellulose nanocrystals from saw dust wastes , 2015 .

[363]  S. Rabiej A comparison of two X-ray diffraction procedures for crystallinity determination , 1991 .

[364]  L. Segal',et al.  An Empirical Method for Estimating the Degree of Crystallinity of Native Cellulose Using the X-Ray Diffractometer , 1959 .

[365]  Jari Vartiainen,et al.  Health and environmental safety aspects of friction grinding and spray drying of microfibrillated cellulose , 2011 .

[366]  S. Nutt,et al.  Modeling of Fiber-reinforced Phenolic Foam , 2008 .

[367]  E. J. Foster,et al.  Directed cell growth in multi-zonal scaffolds for cartilage tissue engineering. , 2016, Biomaterials.

[368]  F. Cousin,et al.  Influence of charge density and ionic strength on the aggregation process of cellulose nanocrystals in aqueous suspension, as revealed by small-angle neutron scattering. , 2015, Langmuir : the ACS journal of surfaces and colloids.

[369]  Darren J. Martin,et al.  Production of cellulose nanocrystals via a scalable mechanical method , 2015 .

[370]  W. Wohlleben,et al.  Eye irritation testing of nanomaterials using the EpiOcular™ eye irritation test and the bovine corneal opacity and permeability assay , 2015, Particle and Fibre Toxicology.

[371]  E. Cranston,et al.  Birefringence in spin-coated films containing cellulose nanocrystals , 2008 .

[372]  G. Garnier,et al.  Modulating the zeta potential of cellulose nanocrystals using salts and surfactants , 2016 .

[373]  S. Kelley,et al.  Ultrathin film coatings of aligned cellulose nanocrystals from a convective-shear assembly system and their surface mechanical properties , 2011 .

[374]  M. Kamal,et al.  Effect of drying conditions on cellulose nanocrystal (CNC) agglomerate porosity and dispersibility in polymer nanocomposites , 2014 .

[375]  A. Steyermark Quantitative Organic Microanalysis , 1951 .

[376]  F. Jiang,et al.  Acid-catalyzed and solvolytic desulfation of H2SO4-hydrolyzed cellulose nanocrystals. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[377]  Jianguo Huang,et al.  Luminescent cellulose sheet fabricated by facile self-assembly of cadmium selenide nanoparticles on cellulose nanofibres , 2011 .

[378]  W. Thielemans,et al.  Improving the reproducibility of chemical reactions on the surface of cellulose nanocrystals: ROP of ε-caprolactone as a case study , 2011 .

[379]  Xinfeng Xie,et al.  Drying cellulose-based materials containing copper nanoparticles , 2015, Cellulose.

[380]  D. Gray,et al.  AFM of adsorbed polyelectrolytes on cellulose I surfaces spin-coated on silicon wafers , 2005 .

[381]  Y. Martínez-Rubí,et al.  Mechanistic insights into the effect of nanoparticles on zebrafish hatch , 2014, Nanotoxicology.

[382]  Stephen J. Eichhorn,et al.  An estimation of the Young’s modulus of bacterial cellulose filaments , 2008 .

[383]  J. Keckes,et al.  Tensile properties of cellulose acetate butyrate composites reinforced with bacterial cellulose , 2004 .

[384]  D M Paquette,et al.  Comparison of three common amine reactive fluorescent probes used for conjugation to biomolecules by capillary zone electrophoresis. , 1995, Bioconjugate chemistry.

[385]  Junyong Zhu,et al.  Kinetics of Strong Acid Hydrolysis of a Bleached Kraft Pulp for Producing Cellulose Nanocrystals (CNCs) , 2014 .

[386]  M. Österberg,et al.  Interaction between water-soluble polysaccharides and native nanofibrillar cellulose thin films , 2011, BioResources.

[387]  E. J. Foster,et al.  Comparison of the properties of cellulose nanocrystals and cellulose nanofibrils isolated from bacteria, tunicate, and wood processed using acid, enzymatic, mechanical, and oxidative methods. , 2014, ACS applied materials & interfaces.

[388]  Janne Laine,et al.  Modification of cellulose nanofibrils with luminescent carbon dots. , 2014, Biomacromolecules.

[389]  Xuan Yang,et al.  Hybrid fluorescent nanoparticles from quantum dots coupled to cellulose nanocrystals , 2017, Cellulose.

[390]  M. L. Cerrada,et al.  Surface silylation of cellulose microfibrils: preparation and rheological properties , 2004 .

[391]  S. Berot,et al.  Rheological characterization of microfibrillated cellulose suspensions after freezing , 2010 .

[392]  D. Gray,et al.  Fluorescence emission from mechanical pulp sheets , 1993 .

[393]  Jordi Arbiol,et al.  Induced shape controllability by tailored precursor design in thermal and microwave-assisted synthesis of $$\mathrm{Fe}_{3}\mathrm{O}_{4}$$Fe3O4 nanoparticles , 2015 .

[394]  L. Berglund,et al.  Cellulose nanocomposite biopolymer foam--hierarchical structure effects on energy absorption. , 2011, ACS applied materials & interfaces.

[395]  Qi Zhou,et al.  Surface quaternized cellulose nanofibrils with high water absorbency and adsorption capacity for anionic dyes , 2013 .

[396]  Julien Bras,et al.  Microfibrillated cellulose - its barrier properties and applications in cellulosic materials: a review. , 2012, Carbohydrate polymers.

[397]  R. Venditti,et al.  Surface interaction forces of cellulose nanocrystals grafted with thermoresponsive polymer brushes. , 2011, Biomacromolecules.

[398]  J. Rohrer,et al.  Applications of ion chromatography for pharmaceutical and biological products , 2012 .

[399]  Enyong Ding,et al.  CHARACTERIZATION OF PET FABRICS SURFACE MODIFIED BY GRAFT CELLULOSE NANO-CRYSTAL USING TGA, FE-SEM AND XPS , 2006 .

[400]  M. Roman,et al.  Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. , 2005, Biomacromolecules.

[401]  Michael Ioelovich,et al.  Characterization of Various Kinds of Nanocellulose , 2017 .

[402]  A. J. Michell Second-derivative F.t.-i.r. spectra of native celluloses , 1990 .

[403]  J. Reynolds,et al.  Gender differences in murine pulmonary responses elicited by cellulose nanocrystals , 2015, Particle and Fibre Toxicology.

[404]  J. Putaux,et al.  Surface peeling of cellulose nanocrystals resulting from periodate oxidation and reductive amination with water-soluble polymers , 2015, Cellulose.

[405]  K. Conley,et al.  Chemically peeling layers of cellulose nanocrystals by periodate and chlorite oxidation , 2016, Cellulose.

[406]  Janne Laine,et al.  Cellulose nanocrystal submonolayers by spin coating. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[407]  E. Cranston,et al.  Model Cellulose I Surfaces: A Review , 2009 .

[408]  Qi Zhou,et al.  Hydrophobic cellulose nanocrystals modified with quaternary ammonium salts , 2012 .

[409]  M. Mazloumi,et al.  Ensemble and Single Particle Fluorescence Characterization of Dye-Labeled Cellulose Nanocrystals. , 2017, Langmuir : the ACS journal of surfaces and colloids.

[410]  K. Lin,et al.  Dual-functionalized cellulose nanofibrils prepared through TEMPO-mediated oxidation and surface-initiated ATRP , 2015 .

[411]  Stefan Tenzer,et al.  Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. , 2013, Nature nanotechnology.

[412]  Julien Bras,et al.  Cellulosic Bionanocomposites: A Review of Preparation, Properties and Applications , 2010 .

[413]  I. Ahmad,et al.  Hydrophobic kenaf nanocrystalline cellulose for the binding of curcumin. , 2017, Carbohydrate polymers.

[414]  H. Chanzy,et al.  The hydrogen bond network in I β cellulose as observed by infrared spectrometry , 2000 .

[415]  Kentaro Abe,et al.  Review: current international research into cellulose nanofibres and nanocomposites , 2010, Journal of Materials Science.

[416]  R. Horne,et al.  A negative staining method for high resolution electron microscopy of viruses. , 1959, Biochimica et biophysica acta.

[417]  J. Putaux,et al.  Iα → Iβ transition of cellulose under ultrasonic radiation , 2013, Cellulose.

[418]  L. Bergström,et al.  Cellulose nanocrystal-based materials: from liquid crystal self-assembly and glass formation to multifunctional thin films , 2014 .

[419]  M. Méthot,et al.  Erratum to: General procedure for determining cellulose nanocrystal sulfate half-ester content by conductometric titration , 2015, Cellulose.

[420]  Brian O'Connor,et al.  An ecotoxicological characterization of nanocrystalline cellulose (NCC) , 2010, Nanotoxicology.

[421]  A. Dufresne,et al.  Preparation of Cellulose Whiskers Reinforced Nanocomposites from an Organic Medium Suspension , 2004 .

[422]  M. Vignon,et al.  Structural aspects in ultrathin cellulose microfibrils followed by 13C CP-MAS NMR , 1999 .

[423]  John H T Luong,et al.  Characteristics and properties of carboxylated cellulose nanocrystals prepared from a novel one-step procedure. , 2011, Small.

[424]  Shuping Dong,et al.  Fluorescently labeled cellulose nanocrystals for bioimaging applications. , 2007, Journal of the American Chemical Society.

[425]  D. Harper,et al.  Acetylation of cellulose nanowhiskers with vinyl acetate under moderate conditions. , 2009, Macromolecular bioscience.

[426]  Alain Wagner,et al.  Developments and recent advancements in the field of endogenous amino acid selective bond forming reactions for bioconjugation. , 2015, Chemical Society reviews.

[427]  Leena‐Sisko Johansson,et al.  Model films from native cellulose nanofibrils. Preparation, swelling, and surface interactions. , 2008, Biomacromolecules.

[428]  S. Chandrasekhar Liquid Crystals: Cholesteric liquid crystals , 1992 .

[429]  J. Youngblood,et al.  Hygroscopic Swelling Determination of Cellulose Nanocrystal (CNC) Films by Polarized Light Microscopy Digital Image Correlation. , 2017, Biomacromolecules.

[430]  F. Brockman,et al.  Alexa fluor-labeled fluorescent cellulose nanocrystals for bioimaging solid cellulose in spatially structured microenvironments. , 2015, Bioconjugate chemistry.

[431]  L. Heux,et al.  Versatile gas-phase reactions for surface to bulk esterification of cellulose microfibrils aerogels. , 2013, Biomacromolecules.