Layer-dependent activity in human prefrontal cortex during working memory

[1]  Lawrence L. Wald,et al.  Intracortical smoothing of small-voxel fMRI data can provide increased detection power without spatial resolution losses compared to conventional large-voxel fMRI data , 2019, NeuroImage.

[2]  Kamil Ugurbil,et al.  A critical assessment of data quality and venous effects in sub-millimeter fMRI , 2019, NeuroImage.

[3]  Kendrick Kay,et al.  A critical assessment of data quality and venous effects in ultra-high-resolution fMRI , 2018, bioRxiv.

[4]  Antonio Ulloa,et al.  Simulating laminar neuroimaging data for a visual delayed match-to-sample task , 2018, NeuroImage.

[5]  Earl K. Miller,et al.  Laminar recordings in frontal cortex suggest distinct layers for maintenance and control of working memory , 2018, Proceedings of the National Academy of Sciences.

[6]  Laurentius Huber,et al.  Techniques for blood volume fMRI with VASO: From low-resolution mapping towards sub-millimeter layer-dependent applications , 2018, NeuroImage.

[7]  Natalia Petridou,et al.  Laminar imaging of positive and negative BOLD in human visual cortex at 7T , 2018, NeuroImage.

[8]  Laurentius Huber,et al.  High-Resolution CBV-fMRI Allows Mapping of Laminar Activity and Connectivity of Cortical Input and Output in Human M1 , 2017, Neuron.

[9]  Klaas E. Stephan,et al.  Laminar fMRI and computational theories of brain function , 2017, NeuroImage.

[10]  David C. Jangraw,et al.  Ultra-high resolution blood volume fMRI and BOLD fMRI in humans at 9.4 T: Capabilities and challenges , 2017, NeuroImage.

[11]  Natalia Petridou,et al.  Laminar fMRI: What can the time domain tell us? , 2017, NeuroImage.

[12]  Harald E. Möller,et al.  Non-BOLD contrast for laminar fMRI in humans: CBF, CBV, and CMRO2 , 2017, NeuroImage.

[13]  Lars Muckli,et al.  Laminar fMRI: Applications for cognitive neuroscience , 2017, NeuroImage.

[14]  Jonathan R. Polimeni,et al.  Analysis strategies for high-resolution UHF-fMRI data , 2017, NeuroImage.

[15]  Allan R. Jones,et al.  Comprehensive cellular‐resolution atlas of the adult human brain , 2016, The Journal of comparative neurology.

[16]  Wayne E. Mackey,et al.  Human Dorsolateral Prefrontal Cortex Is Not Necessary for Spatial Working Memory , 2016, The Journal of Neuroscience.

[17]  F. D. Lange,et al.  Selective Activation of the Deep Layers of the Human Primary Visual Cortex by Top-Down Feedback , 2016, Current Biology.

[18]  R. Goebel,et al.  Frequency preference and attention effects across cortical depths in the human primary auditory cortex , 2015, Proceedings of the National Academy of Sciences.

[19]  Lucy S. Petro,et al.  Contextual Feedback to Superficial Layers of V1 , 2015, Current Biology.

[20]  C. Curtis,et al.  Multiple component networks support working memory in prefrontal cortex , 2015, Proceedings of the National Academy of Sciences.

[21]  Anna Devor,et al.  Quantifying the Microvascular Origin of BOLD-fMRI from First Principles with Two-Photon Microscopy and an Oxygen-Sensitive Nanoprobe , 2015, The Journal of Neuroscience.

[22]  Robert Turner,et al.  Slab‐selective, BOLD‐corrected VASO at 7 Tesla provides measures of cerebral blood volume reactivity with high signal‐to‐noise ratio , 2014, Magnetic resonance in medicine.

[23]  Robert Turner,et al.  Myelin and iron concentration in the human brain: A quantitative study of MRI contrast , 2014, NeuroImage.

[24]  Harald E. Möller,et al.  Mapping of arterial transit time by intravascular signal selection , 2014, NMR in biomedicine.

[25]  J. Grafman,et al.  Dorsolateral prefrontal contributions to human working memory , 2013, Cortex.

[26]  J. Morrison,et al.  NMDA Receptors Subserve Persistent Neuronal Firing during Working Memory in Dorsolateral Prefrontal Cortex , 2013, Neuron.

[27]  N. Logothetis,et al.  High-Resolution fMRI Reveals Laminar Differences in Neurovascular Coupling between Positive and Negative BOLD Responses , 2012, Neuron.

[28]  A. Arnsten,et al.  Neuromodulation of Thought: Flexibilities and Vulnerabilities in Prefrontal Cortical Network Synapses , 2012, Neuron.

[29]  Robert E. Hampson,et al.  Neural Activity in Frontal Cortical Cell Layers: Evidence for Columnar Sensorimotor Processing , 2011, Journal of Cognitive Neuroscience.

[30]  R. Turner,et al.  Microstructural Parcellation of the Human Cerebral Cortex – From Brodmann's Post-Mortem Map to in vivo Mapping with High-Field Magnetic Resonance Imaging , 2011, Front. Hum. Neurosci..

[31]  Lawrence L. Wald,et al.  Laminar analysis of 7T BOLD using an imposed spatial activation pattern in human V1 , 2010, NeuroImage.

[32]  Lawrence L. Wald,et al.  Three dimensional echo-planar imaging at 7 Tesla , 2010, NeuroImage.

[33]  Seong-Gi Kim,et al.  Cortical layer-dependent arterial blood volume changes: Improved spatial specificity relative to BOLD fMRI , 2010, NeuroImage.

[34]  Tobias Kober,et al.  MP2RAGE, a self bias-field corrected sequence for improved segmentation and T1-mapping at high field , 2010, NeuroImage.

[35]  Brian B. Avants,et al.  Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain , 2008, Medical Image Anal..

[36]  Jonathan W. Peirce,et al.  PsychoPy—Psychophysics software in Python , 2007, Journal of Neuroscience Methods.

[37]  Giulio Tononi,et al.  Repetitive Transcranial Magnetic Stimulation Dissociates Working Memory Manipulation from Retention Functions in the Prefrontal, but not Posterior Parietal, Cortex , 2006, Journal of Cognitive Neuroscience.

[38]  H. Barbas,et al.  Diversity of laminar connections linking periarcuate and lateral intraparietal areas depends on cortical structure , 2006, The European journal of neuroscience.

[39]  Tyrone D. Cannon,et al.  Dorsolateral prefrontal cortex activity during maintenance and manipulation of information in working memory in patients with schizophrenia. , 2005, Archives of general psychiatry.

[40]  K. Uğurbil,et al.  The Spatial Dependence of the Poststimulus Undershoot as Revealed by High-Resolution BOLD- and CBV-Weighted fMRI , 2005, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[41]  M. Inase,et al.  Organization of prefrontal outflow toward frontal motor‐related areas in macaque monkeys , 2004, The European journal of neuroscience.

[42]  P. Goldman-Rakic,et al.  Selective D2 Receptor Actions on the Functional Circuitry of Working Memory , 2004, Science.

[43]  N. Kanwisher,et al.  Common Neural Substrates for Response Selection across Modalities and Mapping Paradigms , 2003, Journal of Cognitive Neuroscience.

[44]  C. Curtis,et al.  Persistent activity in the prefrontal cortex during working memory , 2003, Trends in Cognitive Sciences.

[45]  J. Pekar,et al.  Functional magnetic resonance imaging based on changes in vascular space occupancy , 2003, Magnetic resonance in medicine.

[46]  Eliot Hazeltine,et al.  Dissociable Contributions of Prefrontal and Parietal Cortices to Response Selection , 2002, NeuroImage.

[47]  M. D’Esposito,et al.  Neural implementation of response selection in humans as revealed by localized effects of stimulus–response compatibility on brain activation , 2002, Human brain mapping.

[48]  Keith J. Worsley,et al.  Statistical analysis of activation images , 2001 .

[49]  R. E. Passingham,et al.  Interference with Performance of a Response Selection Task that has no Working Memory Component: An rTMS Comparison of the Dorsolateral Prefrontal and Medial Frontal Cortex , 2001, Journal of Cognitive Neuroscience.

[50]  J. Cohen,et al.  Relation of prefrontal cortex dysfunction to working memory and symptoms in schizophrenia. , 2001, The American journal of psychiatry.

[51]  A M Dale,et al.  Measuring the thickness of the human cerebral cortex from magnetic resonance images. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[52]  X. Wang,et al.  Synaptic Basis of Cortical Persistent Activity: the Importance of NMDA Receptors to Working Memory , 1999, The Journal of Neuroscience.

[53]  B. Postle,et al.  Maintenance versus Manipulation of Information Held in Working Memory: An Event-Related fMRI Study , 1999, Brain and Cognition.

[54]  D. Pandya,et al.  Dorsolateral prefrontal cortex: comparative cytoarchitectonic analysis in the human and the macaque brain and corticocortical connection patterns , 1999, The European journal of neuroscience.

[55]  S. Hirsch,et al.  Reduced dendritic spine density on cerebral cortical pyramidal neurons in schizophrenia , 1998, Journal of neurology, neurosurgery, and psychiatry.

[56]  Leslie G. Ungerleider,et al.  An area specialized for spatial working memory in human frontal cortex. , 1998, Science.

[57]  M. L. Pucak,et al.  Synaptic targets of pyramidal neurons providing intrinsic horizontal connections in monkey prefrontal cortex , 1998, The Journal of comparative neurology.

[58]  Leslie G. Ungerleider,et al.  Transient and sustained activity in a distributed neural system for human working memory , 1997, Nature.

[59]  R W Cox,et al.  AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. , 1996, Computers and biomedical research, an international journal.

[60]  M. D’Esposito,et al.  The neural basis of the central executive system of working memory , 1995, Nature.

[61]  P. Goldman-Rakic Cellular basis of working memory , 1995, Neuron.

[62]  P. Goldman-Rakic,et al.  Characterization of the dopaminergic innervation of the primate frontal cortex using a dopamine-specific antibody. , 1993, Cerebral cortex.

[63]  T. Sawaguchi,et al.  Catecholaminergic effects on neuronal activity related to a delayed response task in monkey prefrontal cortex. , 1990, Journal of neurophysiology.

[64]  T. Sawaguchi,et al.  Depth distribution of neuronal activity related to a visual reaction time task in the monkey prefrontal cortex. , 1989, Journal of neurophysiology.

[65]  K Watanabe,et al.  Connections of area 8 with area 6 in the brain of the macaque monkey , 1988, The Journal of comparative neurology.

[66]  K. Kubota,et al.  The organization of prefrontocaudate projections and their laminar origin in the macaque monkey: A retrograde study using HRP‐gel , 1986, The Journal of comparative neurology.

[67]  S. Geisser,et al.  On methods in the analysis of profile data , 1959 .

[68]  A. Walker,et al.  A cytoarchitectural study of the prefrontal area of the macaque monkey , 1940 .

[69]  C. Seiler ANOVA , 2019, Springer Reference Medizin.

[70]  Marcello Massimini,et al.  Repetitive transcranial magnetic stimulation dissociates working memory manipulation from retention functions in the prefrontal , but not posterior parietal , 2018 .

[71]  D. Pandya,et al.  Laminar origin of striatal and thalamic projections of the prefrontal cortex in rhesus monkeys , 2004, Experimental Brain Research.

[72]  D. Lewis,et al.  Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. , 2000, Archives of general psychiatry.

[73]  Karl J. Friston,et al.  Statistical parametric maps in functional imaging: A general linear approach , 1994 .