Parameter identification techniques applied to an environmental pollution model

The retrieval of parameters related to an environmental model is explored. We address computational challenges occurring due to a significant numerical difference of up to two orders of magnitude between the two model parameters we aim to retrieve. First, the corresponding optimization problem is poorly scaled, causing minimization algorithms to perform poorly (see Gill et al., practical optimization, AP, 1981,401pp ). This issue is addressed by proper rescaling. Difficulties also arise from the presence of strong nonlinearity and ill-posedness which means that the parameters do not converge to a single deterministic set of values, but rather there exists a range of parameter combinations that produce the same model behavior. We address these computational issues by the addition of a regularization term in the cost function. All these computational approaches are addressed in the framework of variational adjoint data assimilation. The used observational data are derived from numerical simulation results located at only two spatial points. The effect of different initial guess values of parameters on retrieval results is also considered. As indicated by results of numerical experiments, the method presented in this paper achieves a near perfect parameter identification, and overcomes the indefiniteness that may occur in inversion process even in the case of noisy input data.

[1]  T. Bewley,et al.  A computational framework for the regularization of adjoint analysis in multiscale PDE systems , 2004 .

[2]  Charbel Farhat,et al.  On the solution of three-dimensional inverse obstacle acoustic scattering problems by a regularized Newton method , 2002 .

[3]  H. Engl Discrepancy principles for Tikhonov regularization of ill-posed problems leading to optimal convergence rates , 1987 .

[4]  Ionel M. Navon,et al.  Conjugate-Gradient Methods for Large-Scale Minimization in Meteorology , 1987 .

[5]  Wenjun Liu,et al.  General Decay and Blow-Up of Solutions for a System of Viscoelastic Equations of Kirchhoff Type with Strong Damping , 2014 .

[6]  Max Gunzburger,et al.  Adjoint Equation-Based Methods for Control Problems in Incompressible, Viscous Flows , 2000 .

[7]  K. Teo,et al.  A unified parameter identification method for nonlinear time-delay systems , 2013 .

[8]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[9]  B. Malengier,et al.  Parameter estimation in convection dominated nonlinear convection-diffusion problems by the relaxation method and the adjoint equation , 2008 .

[10]  Ionel Michael Navon,et al.  Practical and theoretical aspects of adjoint parameter estimation and identifiability in meteorology and oceanography , 1998 .

[11]  I. M. Navon,et al.  Impact of Parameter Estimation on the Performance of the FSU Global Spectral Model Using Its Full-Physics Adjoint , 1999 .

[12]  H. H. Rachford,et al.  The Numerical Solution of Parabolic and Elliptic Differential Equations , 1955 .

[13]  Yuepeng Wang,et al.  Application of regularization technique to variational adjoint method: A case for nonlinear convection-diffusion problem , 2011, Appl. Math. Comput..

[14]  Kok Lay Teo,et al.  Parameter estimation for nonlinear time-delay systems with noisy output measurements , 2015, Autom..

[15]  Lauri Kettunen,et al.  Use of Tikhonov Regularization to Improve the Accuracy of Position Estimates in Inertial Navigation , 2011 .

[16]  J. Derber,et al.  Variational Data Assimilation with an Adiabatic Version of the NMC Spectral Model , 1992 .

[17]  You-Wei,et al.  Adaptive Parameter Selection for Total Variation Image Deconvolution , 2009 .

[18]  Dacian N. Daescu,et al.  Effect of random perturbations on adaptive observation techniques , 2012 .

[19]  Tamara G. Kolda,et al.  Poblano v1.0: A Matlab Toolbox for Gradient-Based Optimization , 2010 .

[20]  Ionel M. Navon,et al.  2D Burgers equation with large Reynolds number using POD/DEIM and calibration , 2016 .

[21]  Ionel M. Navon,et al.  An Optimal Nudging Data Assimilation Scheme Using Parameter Estimation , 1992 .

[22]  Chao Xu,et al.  Computational Optimal Control of the Saint-Venant PDE Model Using the Time-scaling Technique , 2015, ArXiv.

[23]  Identification of atmospheric boundary layer parameters by inverse problem , 2007 .

[24]  Juan Du,et al.  Reduced order modeling based on POD of a parabolized Navier-Stokes equations model II: Trust region POD 4D VAR data assimilation , 2013, Comput. Math. Appl..

[25]  Philip E. Gill,et al.  Practical optimization , 1981 .

[26]  Kok Lay Teo,et al.  An Optimization Approach to State-Delay Identification $ $ , 2010, IEEE Transactions on Automatic Control.

[27]  J. Wong,et al.  Inverse determination of a heat source from natural convection in a porous cavity , 2011 .

[28]  Per Christian Hansen,et al.  Rank-Deficient and Discrete Ill-Posed Problems , 1996 .

[29]  Marek Rudnicki,et al.  Regularization Parameter Selection in Discrete Ill-Posed Problems — The Use of the U-Curve , 2007, Int. J. Appl. Math. Comput. Sci..

[30]  Wei Han,et al.  Theoretical analyses and numerical experiments of variational assimilation for one-dimensional ocean temperature model with techniques in inverse problems , 2004 .