A Floating Analog Memristor Emulator Circuit

This brief introduces a new floating memristor emulator circuit based on second-generation current conveyors and passive elements. A mathematical model to characterize the memristor behavior was derived, showing a good accuracy among HSPICE simulations and experimental results. An analysis of the frequency behavior of the memristor is also described, showing that the frequency-dependent pinched hysteresis loop in the current-versus-voltage plane holds up to 20.2 kHz. Theoretical derivations and related results are experimentally validated through implementations from commercially available devices, and the proposed memristor emulator circuit can easily be reproducible at a low cost. Furthermore, the emulator circuit can be used as a teaching aid and for future applications with memristors, such as sensors, cellular neural networks, chaotic systems, programmable analog circuits, and nonvolatile memory devices.

[1]  Massimiliano Di Ventra,et al.  Practical Approach to Programmable Analog Circuits With Memristors , 2009, IEEE Transactions on Circuits and Systems I: Regular Papers.

[2]  C. Sanchez-Lopez,et al.  Accuracy vs simulation speed trade-off enhancements in the generation of chaotic attractors , 2013, 2013 IEEE 4th Latin American Symposium on Circuits and Systems (LASCAS).

[3]  Yicheng Zeng,et al.  A memristor oscillator based on a twin-T network , 2013 .

[4]  Dalibor Biolek,et al.  Computation of the Area of Memristor Pinched Hysteresis Loop , 2012, IEEE Transactions on Circuits and Systems II: Express Briefs.

[5]  E. Tlelo-Cuautle,et al.  N-scroll chaotic attractors from saturated function series employing CCII+s , 2010 .

[6]  Carlos Sánchez-López,et al.  Pathological Equivalents of Fully-Differential Active Devices for Symbolic Nodal Analysis , 2013, IEEE Transactions on Circuits and Systems I: Regular Papers.

[7]  César Cruz-Hernández,et al.  Chaotic Communication System Using Chua's oscillators Realized with Ccii+s , 2009, Int. J. Bifurc. Chaos.

[8]  Bocheng Bao,et al.  The voltage—current relationship and equivalent circuit implementation of parallel flux-controlled memristive circuits , 2013 .

[9]  包伯成,et al.  The voltage-current relationship and equivalent circuit implementation of parallel flux-controlled memristive circuits , 2013 .

[10]  Sung-Mo Kang,et al.  Compact Models for Memristors Based on Charge-Flux Constitutive Relationships , 2010, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[11]  Qiang Xu,et al.  A Simple memristor Chaotic Circuit with Complex Dynamics , 2011, Int. J. Bifurc. Chaos.

[12]  Leon O. Chua,et al.  A Voltage Mode Memristor Bridge Synaptic Circuit with Memristor Emulators , 2012, Sensors.

[13]  Leon O. Chua,et al.  Simplest Chaotic Circuit , 2010, Int. J. Bifurc. Chaos.

[14]  György Cserey,et al.  Macromodeling of the Memristor in SPICE , 2010, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[15]  Esteban Tlelo-Cuautle,et al.  On the trade-off between the number of scrolls and the operating frequency of the chaotic attractors , 2011, 2011 IEEE International Symposium of Circuits and Systems (ISCAS).

[16]  Francisco V. Fernández,et al.  Pathological Element-Based Active Device Models and Their Application to Symbolic Analysis , 2011, IEEE Transactions on Circuits and Systems I: Regular Papers.

[17]  包伯成,et al.  Chaotic memristive circuit: equivalent circuit realization and dynamical analysis , 2011 .

[18]  Chris Yakopcic,et al.  Memristor SPICE Modeling , 2012 .

[19]  L. Chua Memristor-The missing circuit element , 1971 .

[20]  Bharathwaj Muthuswamy,et al.  Implementing Memristor Based Chaotic Circuits , 2010, Int. J. Bifurc. Chaos.

[21]  S. Kvatinsky,et al.  The Desired Memristor for Circuit Designers , 2013, IEEE Circuits and Systems Magazine.

[22]  Carlos Sánchez-López,et al.  Automatic synthesis of chaotic attractors , 2011, Appl. Math. Comput..

[23]  Sangho Shin,et al.  Compact Circuit Model and Hardware Emulation for Floating Memristor Devices , 2013, IEEE Circuits and Systems Magazine.

[24]  Leon O. Chua,et al.  Memristor Emulator for Memristor Circuit Applications , 2012, IEEE Transactions on Circuits and Systems I: Regular Papers.

[25]  Carlos Sánchez-López,et al.  Frequency behavior of saturated nonlinear function series based on opamps , 2013 .

[26]  Dalibor Biolek,et al.  SPICE Model of Memristor with Nonlinear Dopant Drift , 2009 .

[27]  Mohammad Javad Sharifi,et al.  General SPICE Models for Memristor and Application to Circuit Simulation of Memristor-Based Synapses and Memory Cells , 2010, J. Circuits Syst. Comput..

[28]  李志军,et al.  A memristor oscillator based on a twin-T network , 2013 .

[29]  Bharathwaj Muthuswamy,et al.  Memristor-Based Chaotic Circuits , 2009 .

[30]  Victor Sreeram,et al.  Controlling Chaos in a Memristor Based Circuit Using a Twin-T Notch Filter , 2011, IEEE Transactions on Circuits and Systems I: Regular Papers.

[31]  S. Benderli,et al.  On SPICE macromodelling of TiO 2 memristors , 2009 .

[32]  Gaurav Gandhi,et al.  Circuit Mimicking TiO2 Memristor: a Plug and Play Kit to Understand the Fourth Passive Element , 2010, Int. J. Bifurc. Chaos.

[33]  Chris Yakopcic,et al.  Chapter 12 Memristor SPICE Modeling , 2012 .

[34]  D. Batas,et al.  A Memristor SPICE Implementation and a New Approach for Magnetic Flux-Controlled Memristor Modeling , 2011, IEEE Transactions on Nanotechnology.