The Domain Landscape of Virus-Host Interactomes

Viral infections result in millions of deaths in the world today. A thorough analysis of virus-host interactomes may reveal insights into viral infection and pathogenic strategies. In this study, we presented a landscape of virus-host interactomes based on protein domain interaction. Compared to the analysis at protein level, this domain-domain interactome provided a unique abstraction of protein-protein interactome. Through comparisons among DNA, RNA, and retrotranscribing viruses, we identified a core of human domains, that viruses used to hijack the cellular machinery and evade the immune system, which might be promising antiviral drug targets. We showed that viruses preferentially interacted with host hub and bottleneck domains, and the degree and betweenness centrality among three categories of viruses are significantly different. Further analysis at functional level highlighted that different viruses perturbed the host cellular molecular network by common and unique strategies. Most importantly, we creatively proposed a viral disease network among viral domains, human domains and the corresponding diseases, which uncovered several unknown virus-disease relationships that needed further verification. Overall, it is expected that the findings will help to deeply understand the viral infection and contribute to the development of antiviral therapy.

[1]  Osamu Takeuchi,et al.  Innate immunity to virus infection , 2009, Immunological reviews.

[2]  C. Lilley,et al.  Genomes in conflict: maintaining genome integrity during virus infection. , 2010, Annual review of microbiology.

[3]  Andrew J. Bordner,et al.  Comprehensive inventory of protein complexes in the Protein Data Bank from consistent classification of interfaces , 2008, BMC Bioinformatics.

[4]  Deok-Sun Lee,et al.  Viral Perturbations of Host Networks Reflect Disease Etiology , 2012, PLoS Comput. Biol..

[5]  Donna R. Maglott,et al.  Human immunodeficiency virus type 1, human protein interaction database at NCBI , 2008, Nucleic Acids Res..

[6]  J. Lavergne,et al.  Human Gene Mutation , 1994 .

[7]  Dmitrij Frishman,et al.  The Negatome database: a reference set of non-interacting protein pairs , 2009, Nucleic Acids Res..

[8]  David L. Wheeler,et al.  GenBank , 2015, Nucleic Acids Res..

[9]  Ioannis Xenarios,et al.  DIP: The Database of Interacting Proteins: 2001 update , 2001, Nucleic Acids Res..

[10]  Arnaud Céol,et al.  3did: identification and classification of domain-based interactions of known three-dimensional structure , 2010, Nucleic Acids Res..

[11]  T. Tahirov,et al.  Crystal structure of HIV-1 Tat complexed with human P-TEFb , 2010, Nature.

[12]  A. Barabasi,et al.  Lethality and centrality in protein networks , 2001, Nature.

[13]  Gautier Koscielny,et al.  Ensembl 2012 , 2011, Nucleic Acids Res..

[14]  B. Moss,et al.  Colocalization of transcription and translation within cytoplasmic poxvirus factories coordinates viral expression and subjugates host functions. , 2007, Cell host & microbe.

[15]  Michele Tinti,et al.  VirusMINT: a viral protein interaction database , 2008, Nucleic Acids Res..

[16]  H. Lehrach,et al.  A Human Protein-Protein Interaction Network: A Resource for Annotating the Proteome , 2005, Cell.

[17]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[18]  G. Superti-Furga,et al.  Viral immune modulators perturb the human molecular network by common and unique strategies , 2012, Nature.

[19]  Livia Perfetto,et al.  MINT, the molecular interaction database: 2009 update , 2009, Nucleic Acids Res..

[20]  Ian M. Donaldson,et al.  The Biomolecular Interaction Network Database and related tools 2005 update , 2004, Nucleic Acids Res..

[21]  Brad T. Sherman,et al.  Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources , 2008, Nature Protocols.

[22]  Michael G. Katze,et al.  Viruses and interferon: a fight for supremacy , 2002, Nature Reviews Immunology.

[23]  T. Hunter,et al.  The Protein Kinase Complement of the Human Genome , 2002, Science.

[24]  angesichts der Corona-Pandemie,et al.  UPDATE , 1973, The Lancet.

[25]  Á. Gyuris,et al.  Novel, selective CDK9 inhibitors for the treatment of HIV infection. , 2011, Current medicinal chemistry.

[26]  Kara Dolinski,et al.  The BioGRID Interaction Database: 2011 update , 2010, Nucleic Acids Res..

[27]  G. Dreyfuss,et al.  Messenger-RNA-binding proteins and the messages they carry , 2002, Nature Reviews Molecular Cell Biology.

[28]  Adam J. Smith,et al.  The Database of Interacting Proteins: 2004 update , 2004, Nucleic Acids Res..

[29]  Stephen L. Chen,et al.  The Natural History of Hepatitis C Virus (HCV) Infection , 2006, International journal of medical sciences.

[30]  Luis Menéndez-Arias,et al.  HIV protease cleaves poly(A)-binding protein. , 2006, The Biochemical journal.

[31]  E. Clercq Frontiers in Microbiology , 1987, New Perspectives in Clinical Microbiology.

[32]  Tunahan Çakir,et al.  Infection Strategies of Bacterial and Viral Pathogens through Pathogen–Human Protein–Protein Interactions , 2012, Front. Microbio..

[33]  S. Teichmann,et al.  Domain combinations in archaeal, eubacterial and eukaryotic proteomes. , 2001, Journal of molecular biology.

[34]  J. Karn,et al.  Phosphorylation of CDK9 at Ser175 Enhances HIV Transcription and Is a Marker of Activated P-TEFb in CD4+ T Lymphocytes , 2013, PLoS pathogens.

[35]  H. Shih,et al.  Human cellular protein VRK2 interacts specifically with Epstein-Barr virus BHRF1, a homologue of Bcl-2, and enhances cell survival. , 2006, The Journal of general virology.

[36]  E. Birney,et al.  Pfam: the protein families database , 2013, Nucleic Acids Res..

[37]  L. Holm,et al.  The Pfam protein families database , 2005, Nucleic Acids Res..

[38]  R. D. del Ángel,et al.  La protein binds to NS5 and NS3 and to the 5' and 3' ends of Dengue 4 virus RNA. , 2004, Virus research.

[39]  Katherine H. Huang,et al.  Structure, Function and Diversity of the Healthy Human Microbiome , 2012, Nature.

[40]  P. Moore,et al.  Why do viruses cause cancer? Highlights of the first century of human tumour virology , 2010, Nature Reviews Cancer.

[41]  P. Stenson,et al.  The Human Gene Mutation Database: 2008 update , 2009, Genome Medicine.

[42]  Rahul C. Deo,et al.  Interpreting cancer genomes using systematic host network perturbations by tumour virus proteins - eScholarship , 2012 .

[43]  Zohar Itzhaki,et al.  Domain-Domain Interactions Underlying Herpesvirus-Human Protein-Protein Interaction Networks , 2011, PloS one.

[44]  Christian Gautier,et al.  VirHostNet: a knowledge base for the management and the analysis of proteome-wide virus–host interaction networks , 2008, Nucleic Acids Res..

[45]  S. Goff,et al.  Host factors exploited by retroviruses , 2007, Nature Reviews Microbiology.

[46]  L. Laimins,et al.  Human papillomaviruses: basic mechanisms of pathogenesis and oncogenicity , 2006, Reviews in medical virology.

[47]  Mark Gerstein,et al.  The Importance of Bottlenecks in Protein Networks: Correlation with Gene Essentiality and Expression Dynamics , 2007, PLoS Comput. Biol..

[48]  M. Moran,et al.  Large-scale mapping of human protein–protein interactions by mass spectrometry , 2007, Molecular systems biology.

[49]  M. Lieber,et al.  The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. , 2010, Annual review of biochemistry.

[50]  S. Baumli,et al.  Perspective of Cyclin-dependent kinase 9 (CDK9) as a Drug Target , 2012, Current pharmaceutical design.

[51]  P. Bork,et al.  A method and server for predicting damaging missense mutations , 2010, Nature Methods.

[52]  Sandhya Rani,et al.  Human Protein Reference Database—2009 update , 2008, Nucleic Acids Res..

[53]  Albert-László Barabási,et al.  Error and attack tolerance of complex networks , 2000, Nature.

[54]  Haiyuan Yu,et al.  Three-dimensional reconstruction of protein networks provides insight into human genetic disease , 2012, Nature Biotechnology.

[55]  Gábor Csárdi,et al.  The igraph software package for complex network research , 2006 .

[56]  Alan F. Scott,et al.  McKusick's Online Mendelian Inheritance in Man (OMIM®) , 2008, Nucleic Acids Res..

[57]  Matthew D. Dyer,et al.  The Landscape of Human Proteins Interacting with Viruses and Other Pathogens , 2008, PLoS pathogens.

[58]  A. Osterhaus,et al.  A Mutation in the HLA-B*2705-Restricted NP383-391 Epitope Affects the Human Influenza A Virus-Specific Cytotoxic T-Lymphocyte Response In Vitro , 2004, Journal of Virology.

[59]  J. Mills,et al.  Human immunodeficiency virus type 1 Nef binds directly to Lck and mitogen-activated protein kinase, inhibiting kinase activity , 1996, Journal of virology.

[60]  Bumki Min,et al.  IDDI: integrated domain-domain interaction and protein interaction analysis system , 2012, Proteome Science.

[61]  Tracey M. Filzen,et al.  HIV-1 Nef disrupts MHC-I trafficking by recruiting AP-1 to the MHC-I cytoplasmic tail , 2004, The Journal of cell biology.

[62]  Matthew R. Laird,et al.  Protein Protein Interaction Network Evaluation for Identifying Potential Drug Targets , 2009 .

[63]  Zohar Itzhaki,et al.  Evolutionary conservation of domain-domain interactions , 2006, Genome Biology.

[64]  T. M. Murali,et al.  The Human-Bacterial Pathogen Protein Interaction Networks of Bacillus anthracis, Francisella tularensis, and Yersinia pestis , 2010, PloS one.

[65]  Markus Blatter,et al.  RNA recognition motifs: boring? Not quite. , 2008, Current opinion in structural biology.

[66]  Rafael C. Jimenez,et al.  The IntAct molecular interaction database in 2012 , 2011, Nucleic Acids Res..

[67]  S. L. Wong,et al.  Towards a proteome-scale map of the human protein–protein interaction network , 2005, Nature.

[68]  G. Hong,et al.  Nucleic Acids Research , 2015, Nucleic Acids Research.

[69]  Yingfeng Zheng,et al.  Host Protein Ku70 Binds and Protects HIV-1 Integrase from Proteasomal Degradation and Is Required for HIV Replication* , 2011, The Journal of Biological Chemistry.

[70]  Robert D. Finn,et al.  iPfam: visualization of protein?Cprotein interactions in PDB at domain and amino acid resolutions , 2005, Bioinform..

[71]  Mingming Jia,et al.  COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer , 2010, Nucleic Acids Res..

[72]  Thomas Lengauer,et al.  Improved scoring of functional groups from gene expression data by decorrelating GO graph structure , 2006, Bioinform..

[73]  E. Holmes,et al.  The evolution of large DNA viruses: combining genomic information of viruses and their hosts. , 2004, Trends in microbiology.

[74]  A. McMichael,et al.  Crystal structures and KIR3DL1 recognition of three immunodominant viral peptides complexed to HLA‐B*2705 , 2005, European journal of immunology.