On fractional order adaptive observer

This article derives a new scheme to an adaptive observer for a class of fractional order systems. Global asymptotic convergence for joint state-parameter estimation is established for linear time invariant single-input single-output systems. For such fractional order systems, it is proved that all the signals in the resulting closed-loop system are globally uniformly bounded, the state and parameter estimation errors converge to zero. Potential applications of the presented adaptive observer include online system identification, fault detection, adaptive control of fractional order systems, etc. Numerical simulation examples are presented to demonstrate the performance of the proposed adaptive observer.

[1]  Yong Wang,et al.  A rational approximate method to fractional order systems , 2014 .

[2]  Yuanqing Xia,et al.  Applied Control Systems Design , 2012 .

[3]  Koksal Erenturk,et al.  Fractional-Order $\hbox{PI}^{\lambda}\hbox{D}^{\mu}$ and Active Disturbance Rejection Control of Nonlinear Two-Mass Drive System , 2013, IEEE Transactions on Industrial Electronics.

[4]  Yong Wang,et al.  Subspace identification for fractional order Hammerstein systems based on instrumental variables , 2012 .

[5]  Yong Zhou,et al.  LMI-based robust control of fractional-order uncertain linear systems , 2011, Comput. Math. Appl..

[6]  V. Govindaraj,et al.  Controllability Results for Nonlinear Fractional-Order Dynamical Systems , 2013, J. Optim. Theory Appl..

[7]  Antonio Visioli,et al.  H∞H∞ control of fractional linear systems , 2013, Autom..

[8]  Wang Li,et al.  Robust stability analysis for a class of fractional order systems with uncertain parameters , 2011, J. Frankl. Inst..

[9]  Yusheng Liu,et al.  Robust adaptive observer for nonlinear systems with unmodeled dynamics , 2009, Autom..

[10]  José António Tenreiro Machado,et al.  Fractional order electromagnetics , 2006, Signal Process..

[11]  Rogelio Lozano,et al.  Adaptive Control: Algorithms, Analysis and Applications , 2011 .

[12]  YangQuan Chen,et al.  Fractional-order Systems and Controls , 2010 .

[13]  Yong Wang,et al.  Frequency domain subspace identification of commensurate fractional order input time delay systems , 2011 .

[14]  Dominik Sierociuk,et al.  OBSERVER FOR DISCRETE FRACTIONAL ORDER STATE-SPACE SYSTEMS , 2006 .

[15]  Alain Oustaloup,et al.  On Observability of Fractional Order Systems , 2009 .

[16]  B. Shafai,et al.  Positive observer design for fractional order systems , 2014, 2014 World Automation Congress (WAC).

[17]  Yan Zhou,et al.  Non-fragile Observer Design for Fractional-order One-sided Lipschitz Nonlinear Systems , 2013, Int. J. Autom. Comput..

[18]  Mohamed Darouach,et al.  Observer-based control for fractional-order continuous-time systems , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[19]  Alain Oustaloup,et al.  State variables and transients of fractional order differential systems , 2012, Comput. Math. Appl..

[20]  Mohamed Darouach,et al.  Adaptive observers design for a class of linear descriptor systems , 2014, Autom..

[21]  Robert R. Bitmead,et al.  Adaptive Control Algorithms , 1991 .

[22]  Hugues Garnier,et al.  Parameter and differentiation order estimation in fractional models , 2013, Autom..

[23]  Wang Yong Improved linear matrix inequalities stability criteria for fractional order systems and robust stabilization synthesis:The 0 , 2013 .

[24]  Maamar Bettayeb,et al.  A NOTE ON THE CONTROLLABILITY AND THE OBSERVABILITY OF FRACTIONAL DYNAMICAL SYSTEMS , 2006 .

[25]  Christophe Farges,et al.  On Observability and Pseudo State Estimation of Fractional Order Systems , 2012, Eur. J. Control.

[26]  Wei Yi-hen Robust stability criteria for uncertain fractional order systems with time delay , 2014 .