BLAZARS AS ULTRA-HIGH-ENERGY COSMIC-RAY SOURCES: IMPLICATIONS FOR TeV GAMMA-RAY OBSERVATIONS

The spectra of BL Lac objects and Fanaroff-Riley I radio galaxies are commonly explained by the one-zone leptonic synchrotron self-Compton (SSC) model. Spectral modeling of correlated multiwavelength data gives the comoving magnetic field strength, the bulk outflow Lorentz factor, and the emission region size. Assuming the validity of the SSC model, the Hillas condition shows that only in rare cases such sources accelerate protons to much above 10{sup 19} eV, so {approx}> 10{sup 20} eV ultra-high-energy cosmic rays (UHECRs) are likely to be heavy ions if powered by this type of radio-loud active galactic nuclei (AGNs). Survival of nuclei is shown to be possible in TeV BL Lacs and misaligned counterparts with weak photohadronic emissions. Another signature of hadronic production is intergalactic UHECR-induced cascade emission, which is an alternative explanation of the TeV spectra of some extreme non-variable blazars such as 1ES 0229+200 or 1ES 1101-232. We study this kind of cascade signal, taking into account effects of the structured extragalactic magnetic fields in which the sources should be embedded. We demonstrate the importance of cosmic-ray deflections on the {gamma}-ray flux, and show that required absolute cosmic-ray luminosities are larger than the average UHECR luminosity inferred from UHECR observations andmore » can even be comparable to the Eddington luminosity of supermassive black holes. Future TeV {gamma}-ray observations using the Cerenkov Telescope Array and the High Altitude Water Cerenkov detector array can test for UHECR acceleration by observing >25 TeV photons from relatively low redshift sources such as 1ES 0229+200, and {approx}>TeV photons from more distant radio-loud AGNs.« less

[1]  R. Yamazaki,et al.  Escape-limited model of cosmic-ray acceleration revisited , 2009, 0910.3449.

[2]  C. Dermer On Gamma Ray Burst and Blazar AGN Origins of the Ultra-High Energy Cosmic Rays in Light of First Results from Auger , 2007, 0711.2804.

[3]  M. Sikora,et al.  A structure and energy dissipation efficiency of relativistic reconfinement shocks , 2008, 0810.3912.

[4]  S. Inoue,et al.  Electron Acceleration and Gamma-Ray Emission from Blazars , 1996 .

[5]  C. Ploetz,et al.  FERMI LARGE AREA TELESCOPE VIEW OF THE CORE OF THE RADIO GALAXY CENTAURUS A , 2010, 1006.5463.

[6]  Italy Universita dell'Insubria,et al.  MAGIC observations and multiwavelength properties of the quasar 3C 279 in 2007 and 2009 , 2011, 1101.2522.

[7]  Y. Dubois,et al.  PROPAGATION OF ULTRAHIGH ENERGY NUCLEI IN CLUSTERS OF GALAXIES: RESULTING COMPOSITION AND SECONDARY EMISSIONS , 2009, 0907.2433.

[8]  M. Lemoine,et al.  Detectability of ultrahigh energy cosmic-ray signatures in gamma-rays , 2010, 1011.0575.

[9]  J. Chiang,et al.  THE FIRST FERMI MULTIFREQUENCY CAMPAIGN ON BL LACERTAE: CHARACTERIZING THE LOW-ACTIVITY STATE OF THE EPONYMOUS BLAZAR , 2011, 1101.5905.

[10]  T. Weekes,et al.  VERITAS OBSERVATIONS OF A VERY HIGH ENERGY γ-RAY FLARE FROM THE BLAZAR 3C 66A , 2009, 0901.4527.

[11]  A. Kusenko,et al.  A new interpretation of the gamma-ray observations of distant active galactic nuclei , 2009, 0905.1162.

[12]  A. Brown,et al.  High energy gamma-ray properties of the FR I radio galaxy NGC 1275 , 2011, 1101.2687.

[13]  Charles D. Dermer,et al.  TIME DELAY OF CASCADE RADIATION FOR TeV BLAZARS AND THE MEASUREMENT OF THE INTERGALACTIC MAGNETIC FIELD , 2010, 1011.6660.

[14]  Ievgen Vovk,et al.  Evidence for Strong Extragalactic Magnetic Fields from Fermi Observations of TeV Blazars , 2010, Science.

[15]  R. Plaga,et al.  Detecting intergalactic magnetic fields using time delays in pulses of γ-rays , 1995, Nature.

[16]  BL Lacertae are probable sources of the observed ultrahigh energy cosmic rays , 2001, astro-ph/0102476.

[17]  C. Norman,et al.  The Origin of Cosmic Rays above 10 18.5 eV , 1995 .

[18]  D. Ryu,et al.  Turbulence and Magnetic Fields in the Large-Scale Structure of the Universe , 2008, Science.

[19]  J. Beacom,et al.  Very-high-energy gamma-ray signal from nuclear photodisintegration as a probe of extragalactic sources of ultrahigh-energy nuclei , 2010, 1002.3980.

[20]  J. Beacom,et al.  Secondary photons and neutrinos from cosmic rays produced by distant blazars. , 2009, Physical review letters.

[21]  Klaus Dolag,et al.  LOWER LIMIT ON THE STRENGTH AND FILLING FACTOR OF EXTRAGALACTIC MAGNETIC FIELDS , 2011 .

[22]  M. V. Fonseca,et al.  SPECTRAL ENERGY DISTRIBUTION OF MARKARIAN 501: QUIESCENT STATE VERSUS EXTREME OUTBURST , 2010, 1012.2200.

[23]  Robert P. Johnson,et al.  FERMI DISCOVERY OF GAMMA-RAY EMISSION FROM NGC 1275 , 2009, 0904.1904.

[24]  D. Thompson,et al.  γ-RAY SPECTRAL EVOLUTION OF NGC 1275 OBSERVED WITH FERMI LARGE AREA TELESCOPE , 2010, 1004.2352.

[25]  J. Beacom,et al.  ROLE OF LINE-OF-SIGHT COSMIC-RAY INTERACTIONS IN FORMING THE SPECTRA OF DISTANT BLAZARS IN TeV GAMMA RAYS AND HIGH-ENERGY NEUTRINOS , 2010, 1011.6340.

[26]  Miguel Ángel Martínez,et al.  Simultaneous Multiwavelength Observations of the Blazar 1ES 1959+650 at a Low TeV Flux , 2008, 0801.4029.

[27]  J. M. Paredes,et al.  DETECTION OF VERY HIGH ENERGY γ-RAY EMISSION FROM THE PERSEUS CLUSTER HEAD–TAIL GALAXY IC 310 BY THE MAGIC TELESCOPES , 2010 .

[28]  Milano,et al.  Constraints on the Physical Parameters of TeV Blazars , 1998, astro-ph/9809051.

[29]  J. Vallée Cosmic magnetic fields – as observed in the Universe, in galactic dynamos, and in the Milky Way , 2004 .

[30]  G. Ghisellini,et al.  TeV BL Lac objects at the dawn of the Fermi era , 2009, 0909.0651.

[31]  F. Massaro,et al.  FERMI LARGE AREA TELESCOPE GAMMA-RAY DETECTION OF THE RADIO GALAXY M87 , 2009, 0910.3565.

[32]  High-energy neutrinos from photomeson processes in blazars. , 2001, Physical review letters.

[33]  Dirk Pandel,et al.  A connection between star formation activity and cosmic rays in the starburst galaxy M82 , 2009, Nature.

[34]  K. Murase Ultrahigh-energy photons as a probe of nearby transient ultrahigh-energy cosmic-ray sources and possible Lorentz-invariance violation. , 2009, Physical review letters.

[35]  E. Boldt,et al.  Cosmic rays from remnants of quasars , 1999, astro-ph/9902342.

[36]  C. Dermer,et al.  VARIABLE GAMMA-RAY EMISSION INDUCED BY ULTRA-HIGH ENERGY NEUTRAL BEAMS: APPLICATION TO 4C +21.35 , 2012, 1203.6544.

[37]  K. Murase,et al.  IMPLICATIONS OF ULTRA–HIGH-ENERGY COSMIC RAYS FOR TRANSIENT SOURCES IN THE AUGER ERA , 2008, 0810.1813.

[38]  F. A. Aharonian TeV gamma rays from BL Lac Objects due to synchrotron radiation of extremely high energy protons , 2000 .

[39]  D. Thompson,et al.  Multi-wavelength Observations of the Flaring Gamma-ray Blazar 3C 66A in 2008 October , 2010, 1011.1053.

[40]  M. Frailis,et al.  THE RADIO/GAMMA-RAY CONNECTION IN ACTIVE GALACTIC NUCLEI IN THE ERA OF THE FERMI LARGE AREA TELESCOPE , 2011, 1108.0501.

[41]  P. Mészáros,et al.  On the Origin and Survival of Ultra-High-Energy Cosmic-Ray Nuclei in Gamma-Ray Bursts and Hypernovae , 2007, 0711.2065.

[42]  Searches for Point-like Sources of Neutrinos with the 40-String IceCube Detector , 2011 .

[43]  Andrew Taylor,et al.  Very hard gamma-ray emission from a flare of Mrk 501 , 2012 .

[44]  Alessandro Bressan,et al.  Modeling the Effects of Dust on Galactic Spectral Energy Distributions from the Ultraviolet to the Millimeter Band , 1998 .

[45]  J Schovancova,et al.  Measurement of the depth of maximum of extensive air showers above 10{18} eV. , 2010, Physical review letters.

[46]  M. Ahlers,et al.  Cosmogenic gamma-rays and the composition of cosmic rays , 2011, 1105.5113.

[47]  F. Takahara,et al.  Constraining the Emission Properties of TeV Blazar H1426+428 by the Synchrotron Self-Compton Model , 2005, astro-ph/0510730.

[48]  A. Chilingarian,et al.  Variable Very High Energy γ-Ray Emission from Markarian 501 , 2007 .

[49]  D. Horns,et al.  Simulation of the expected performance for the proposed gamma-ray detector HiSCORE , 2011, 1104.2336.

[50]  Katsuhiko Sato,et al.  Propagation of Ultra-High-Energy Cosmic Rays above 1019 eV in a Structured Extragalactic Magnetic Field and Galactic Magnetic Field , 2005, astro-ph/0506203.

[51]  G. Ghisellini,et al.  General physical properties of bright Fermi blazars , 2009, 0909.0932.

[52]  G. Wilk,et al.  On the chemical composition of cosmic rays of highest energy , 2010, 1006.1781.

[53]  N. T. Thao,et al.  The Cosmic Ray Energy Spectrum and Related Measurements with the Pierre Auger Observatory , 2009, 0906.2189.

[54]  S. Razzaque,et al.  LOWER LIMITS ON ULTRAHIGH-ENERGY COSMIC RAY AND JET POWERS OF TeV BLAZARS , 2011, 1110.0853.

[55]  G. Ghisellini,et al.  Extreme TeV blazars and the intergalactic magnetic field , 2010, 1009.1048.

[56]  S. Horiuchi,et al.  The production of ultra high energy cosmic rays during the early epochs of radio-loud AGN , 2010, 1010.2788.

[57]  C. Dermer,et al.  Synchrotron Self-Compton Analysis of TeV X-Ray-Selected BL Lacertae Objects , 2008, 0802.1529.

[58]  K. Dolag,et al.  Cluster magnetic fields from galactic outflows , 2008, 0808.0919.

[59]  C. D. Vecchia,et al.  Simulations of Magnetic Fields in Filaments , 2005 .

[60]  On the Propagation of Extragalactic High Energy Cosmic and Gamma-Rays , 1996, astro-ph/9604098.

[61]  R. J. Protheroe,et al.  A proton synchrotron blazar model for flaring in Markarian 501 , 2001 .

[62]  J. Beacom,et al.  Neutrino background flux from sources of ultrahigh-energy cosmic-ray nuclei , 2010, 1003.4959.

[63]  S. Razzaque,et al.  ACCELERATION OF ULTRA-HIGH-ENERGY COSMIC RAYS IN THE COLLIDING SHELLS OF BLAZARS AND GAMMA-RAY BURSTS: CONSTRAINTS FROM THE FERMI GAMMA-RAY SPACE TELESCOPE , 2010, 1004.4249.

[64]  Robert P. Johnson,et al.  THE FIRST CATALOG OF ACTIVE GALACTIC NUCLEI DETECTED BY THE FERMI LARGE AREA TELESCOPE , 2010, 1002.0150.

[65]  Christopher Portier,et al.  Risk factors for childhood leukaemia. Discussion and summary. , 2008, Radiation protection dosimetry.

[66]  D. Hooper,et al.  Predictions for the Cosmogenic Neutrino Flux in Light of New Data from the Pierre Auger Observatory , 2007, 0709.0734.

[67]  M. Mori,et al.  LOWER BOUNDS ON INTERGALACTIC MAGNETIC FIELDS FROM SIMULTANEOUSLY OBSERVED GeV–TeV LIGHT CURVES OF THE BLAZAR Mrk 501 , 2011, 1103.3835.

[68]  BL Lac objects in the synchrotron proton blazar model , 2002, astro-ph/0206164.

[69]  J. Arons Magnetars in the Metagalaxy: An Origin for Ultra-High-Energy Cosmic Rays in the Nearby Universe , 2002, astro-ph/0208444.

[70]  The Acceleration of Ultra--High-Energy Cosmic Rays in Gamma-Ray Bursts , 1995, astro-ph/9506081.

[71]  K. Murase,et al.  THE ROLE OF STRUCTURED MAGNETIC FIELDS ON CONSTRAINING PROPERTIES OF TRANSIENT SOURCES OF ULTRA-HIGH-ENERGY COSMIC RAYS , 2011, 1110.3245.

[72]  M. Sikora,et al.  Reaction rate and energy-loss rate for photopair production by relativistic nuclei , 1992 .

[73]  C. Spiering IceCube and KM3NeT: Lessons and relations , 2010, 1003.2590.

[74]  S. Razzaque,et al.  MODELING THE EXTRAGALACTIC BACKGROUND LIGHT FROM STARS AND DUST , 2009, 0905.1115.

[75]  M. Sikora,et al.  CONSTRAINING EMISSION MODELS OF LUMINOUS BLAZAR SOURCES , 2009, 0904.1414.

[76]  Cosmological gamma-ray bursts and the highest energy cosmic rays. , 1995, Physical review letters.

[77]  K. Mannheim,et al.  Implications of cosmological gamma-ray absorption - II. Modification of gamma-ray spectra , 2003, astro-ph/0309141.

[78]  A. Levinson,et al.  RECOLLIMATION AND RADIATIVE FOCUSING OF RELATIVISTIC JETS: APPLICATIONS TO BLAZARS AND M87 , 2008, 0810.0562.

[80]  G. Moore,et al.  Can electroweak bubble walls run away , 2009, 0903.4099.

[81]  H. Dole,et al.  A lower-limit flux for the extragalactic background light , 2010, 1001.2132.

[82]  F. Takahara On the Origin of Highest Energy Cosmic Rays , 1990 .

[83]  S. Razzaque,et al.  Ultra-high-energy cosmic rays from black hole jets of radio galaxies , 2008, 0811.1160.

[84]  A. Neronov,et al.  Very high-energy γ-ray emission from IC 310 , 2010, 1003.4615.

[85]  F. Aharonian,et al.  MODELING THE HARD TeV SPECTRA OF BLAZARS 1ES 0229+200 AND 3C 66A WITH AN INTERNAL ABSORPTION SCENARIO , 2011, 1106.3129.

[86]  H. Sol,et al.  The multifrequency emission of Mrk 501 From radio to TeV gamma-rays , 2001 .

[87]  A. Hillas The Origin of Ultra-High-Energy Cosmic Rays , 1984 .

[88]  Multiwavelength Observations of Strong Flares From the TeV-Blazar 1ES 1959+650 , 2003, astro-ph/0310158.

[89]  University College Dublin,et al.  Multiwavelength Observations of Markarian 421 in 2001 March: An Unprecedented View on the X-Ray/TeV Correlated Variability , 2007, 0710.4138.

[90]  P. Padovani,et al.  UNIFIED SCHEMES FOR RADIO-LOUD ACTIVE GALACTIC NUCLEI , 1995, astro-ph/9506063.

[91]  Yuan Ye,et al.  Studies of dE/dx measurements with the BESIII , 2010 .

[92]  J. Bahcall,et al.  High-energy neutrinos from astrophysical sources: An Upper bound , 1998, hep-ph/9807282.

[93]  P. Munar-Adrover,et al.  Detection of very high energy gamma-ray emission from NGC 1275 by the MAGIC telescopes , 2011, 1112.3917.

[94]  Katsuhiko Sato,et al.  Implications to sources of ultra-high-energy cosmic rays from their arrival distribution , 2008, 0807.3442.

[95]  F. Fraternali,et al.  Ultra-high energy cosmic rays, spiral galaxies and magnetars , 2008, 0806.2393.

[96]  Kohta Murase,et al.  Probing Intergalactic Magnetic Fields in the GLAST Era through Pair Echo Emission from TeV Blazars , 2008, 0806.2829.

[97]  Cao Zhen,et al.  A future project at tibet: the large high altitude air shower observatory (LHAASO) , 2010 .

[98]  E. Waxman,et al.  Anisotropy vs chemical composition at ultra-high energies , 2009, 0907.1354.

[99]  J. R. Thomas,et al.  Indications of proton-dominated cosmic-ray composition above 1.6 EeV. , 2009, Physical review letters.

[100]  D. Thompson,et al.  FERMI LARGE AREA TELESCOPE OBSERVATIONS OF MISALIGNED ACTIVE GALACTIC NUCLEI , 2010 .

[101]  W. P. Chen,et al.  INSIGHTS INTO THE HIGH-ENERGY γ-RAY EMISSION OF MARKARIAN 501 FROM EXTENSIVE MULTIFREQUENCY OBSERVATIONS IN THE FERMI ERA , 2011 .

[102]  P. O. Hulth,et al.  TIME-INTEGRATED SEARCHES FOR POINT-LIKE SOURCES OF NEUTRINOS WITH THE 40-STRING IceCube DETECTOR , 2010, 1012.2137.

[103]  A. R. Bazer-Bachi,et al.  Fast Variability of Tera–Electron Volt γ Rays from the Radio Galaxy M87 , 2006, Science.

[104]  James J. Beatty,et al.  Correlation of the highest-energy cosmic rays with the positions of nearby active galactic nuclei , 2008 .

[105]  V. Berezinsky,et al.  On astrophysical solution to ultrahigh energy cosmic rays , 2006 .

[106]  E. al.,et al.  SIMULTANEOUS MULTIWAVELENGTH OBSERVATION OF Mkn 501 IN A LOW STATE IN 2006 , 2009, 0910.2093.

[107]  V. Golev,et al.  Design concepts for the Cherenkov Telescope Array CTA: an advanced facility for ground-based high-energy gamma-ray astronomy , 2011 .

[108]  Stefano Gabici,et al.  Pointlike gamma ray sources as signatures of distant accelerators of ultrahigh energy cosmic rays. , 2005, Physical review letters.

[109]  et al,et al.  DETECTION OF GAMMA-RAY EMISSION FROM THE STARBURST GALAXIES M82 AND NGC 253 WITH THE LARGE AREA TELESCOPE ON FERMI , 2009, 0911.5327.

[110]  Martin J. Rees,et al.  Implications of very rapid TeV variability in blazars , 2007, 0709.0540.

[111]  D. Ryu,et al.  Propagation of Ultra-High-Energy Protons through the Magnetized Cosmic Web , 2008, 0801.0371.

[112]  K. Ioka,et al.  High-energy cosmic-ray nuclei from high- and low-luminosity gamma-ray bursts and implications for multimessenger astronomy , 2008, 0801.2861.

[113]  M. Trifoglio,et al.  MULTIWAVELENGTH OBSERVATIONS OF A TeV-FLARE FROM W COMAE , 2009, The Astrophysical Journal.

[114]  Charles D. Dermer,et al.  The Hard VHE γ-Ray Emission in High-Redshift TeV Blazars: Comptonization of Cosmic Microwave Background Radiation in an Extended Jet? , 2008, 0804.3515.

[115]  Katsuhiko Sato,et al.  Cosmogenic neutrinos as a probe of the transition from Galactic to extragalactic cosmic rays , 2007, 0704.0979.

[116]  F. T. Collaboration,et al.  VERITAS observation of Markarian 421 flaring activity , 2011, 1109.6059.

[117]  A. R. Bazer-Bachi,et al.  Detection of Gamma Rays from a Starburst Galaxy , 2009, Science.

[118]  Daming Chen Strong lensing probability in TeVeS (tensor–vector–scalar) theory , 2008 .

[119]  A. M. Taylor,et al.  EGMF Constraints from Simultaneous GeV-TeV Observations of Blazars , 2011, 1101.0932.

[120]  Paul S. Smith,et al.  PROBING THE INNER JET OF THE QUASAR PKS 1510−089 WITH MULTI-WAVEBAND MONITORING DURING STRONG GAMMA-RAY ACTIVITY , 2010, 1001.2574.

[121]  D. Semikoz,et al.  A method of measurement of extragalactic magnetic fields by TeV gamma ray telescopes , 2007 .

[122]  A. Celotti,et al.  Implications for the structure of the relativistic jet from multiwavelength observations of NGC 6251 , 2011, 1107.4302.

[123]  Andrii Elyiv,et al.  DEGREE-SCALE GeV “JETS” FROM ACTIVE AND DEAD TeV BLAZARS , 2010 .