Time-Optimal Self-Stabilizing Leader Election in Population Protocols

We consider the standard population protocol model, where (a priori) indistinguishable and anonymous agents interact in pairs according to uniformly random scheduling. In this model, the only previously known protocol solving the self-stabilizing leader election problem by Cai, Izumi, and Wada [Theor.Comput.Syst. 50] runs in expected parallel time $\Theta(n^2)$ and has the optimal number of $n$ states in a population of $n$ agents. This protocol has the additional property that it becomes silent, i.e., the agents' states eventually stop changing. Observing that any silent protocol solving self-stabilizing leader election requires $\Omega(n)$ expected parallel time, we introduce a silent protocol that runs in asymptotically optimal $O(n)$ expected parallel time with an exponential number of states, as well as a protocol with a slightly worse expected time complexity of $O(n\log n)$ but with the asymptotically optimal $O(n)$ states. Without any silence or state space constraints, we show that it is possible to solve self-stabilizing leader election in asymptotically optimal expected parallel time of $O(\log n)$. All of our protocols (and also that of Cai et al.) work by solving the more difficult ranking problem: assigning agents the ranks $1,\ldots,n$.

[1]  Yves Mocquard,et al.  Analysis of the propagation time of a rumour in large-scale distributed systems , 2016, 2016 IEEE 15th International Symposium on Network Computing and Applications (NCA).

[2]  Koichi Wada,et al.  How to Prove Impossibility Under Global Fairness: On Space Complexity of Self-Stabilizing Leader Election on a Population Protocol Model , 2012, Theory of Computing Systems.

[3]  Dan Alistarh,et al.  Balls-into-leaves: sub-logarithmic renaming in synchronous message-passing systems , 2014, PODC.

[4]  Rachid Guerraoui,et al.  Names Trump Malice: Tiny Mobile Agents Can Tolerate Byzantine Failures , 2009, ICALP.

[5]  Fukuhito Ooshita,et al.  Loosely-stabilizing leader election with polylogarithmic convergence time , 2020, Theor. Comput. Sci..

[6]  Adrian Kosowski,et al.  Brief Announcement: Population Protocols Are Fast , 2018, PODC.

[7]  Eli Upfal,et al.  Probability and Computing: Randomized Algorithms and Probabilistic Analysis , 2005 .

[8]  Yukiko Yamauchi,et al.  Loosely-stabilizing leader election in a population protocol model , 2012, Theor. Comput. Sci..

[9]  David Soloveichik,et al.  Hardness of Computing and Approximating Predicates and Functions with Leaderless Population Protocols , 2018, ICALP.

[10]  Leszek Gasieniec,et al.  Fast Space Optimal Leader Election in Population Protocols , 2017, SODA.

[11]  David Doty,et al.  Composable computation in discrete chemical reaction networks , 2019, Distributed Computing.

[12]  S. Janson Tail bounds for sums of geometric and exponential variables , 2017, 1709.08157.

[13]  James M. Bower,et al.  Computational modeling of genetic and biochemical networks , 2001 .

[14]  Ho-Lin Chen,et al.  Self-Stabilizing Leader Election , 2019, PODC.

[15]  Ho-Lin Chen,et al.  Self-Stabilizing Leader Election in Regular Graphs , 2020, PODC.

[16]  Joffroy Beauquier,et al.  Self-stabilizing Leader Election in Population Protocols over Arbitrary Communication Graphs , 2013, OPODIS.

[17]  Fukuhito Ooshita,et al.  Constant-Space Population Protocols for Uniform Bipartition , 2017, OPODIS.

[18]  Fukuhito Ooshita,et al.  Loosely-Stabilizing Leader Election with Polylogarithmic Convergence Time , 2018, OPODIS.

[19]  David Soloveichik,et al.  Composable Rate-Independent Computation in Continuous Chemical Reaction Networks , 2018, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[20]  Javier Esparza,et al.  Large Flocks of Small Birds: on the Minimal Size of Population Protocols , 2018, STACS.

[21]  Robert Elsässer,et al.  Recent Results in Population Protocols for Exact Majority and Leader Election , 2018, Bull. EATCS.

[22]  Taisuke Izumi On Space and Time Complexity of Loosely-Stabilizing Leader Election , 2015, SIROCCO.

[23]  Janna Burman,et al.  Space-Optimal Naming in Population Protocols , 2019, DISC.

[24]  Dan Alistarh,et al.  Time-Space Trade-offs in Population Protocols , 2016, SODA.

[25]  Leszek Gasieniec,et al.  Almost Logarithmic-Time Space Optimal Leader Election in Population Protocols , 2018, SPAA.

[26]  Matthew Cook,et al.  Computation with finite stochastic chemical reaction networks , 2008, Natural Computing.

[27]  Mikaël Rabie,et al.  Global Versus Local Computations: Fast Computing with Identifiers , 2017, SIROCCO.

[28]  J. Steele,et al.  RANDOM EXCHANGES OF INFORMATION , 1979 .

[29]  Robert Ricci,et al.  Mobile Emulab: A Robotic Wireless and Sensor Network Testbed , 2006, Proceedings IEEE INFOCOM 2006. 25TH IEEE International Conference on Computer Communications.

[30]  Michael J. Fischer,et al.  Self-stabilizing Leader Election in Networks of Finite-State Anonymous Agents , 2006, OPODIS.

[31]  Johanne Cohen,et al.  Playing With Population Protocols , 2008, CSP.

[32]  James Aspnes,et al.  Message complexity of population protocols , 2020, ArXiv.

[33]  Joffroy Beauquier,et al.  Brief Announcement: Space-Optimal Naming in Population Protocols , 2018, PODC.

[34]  Masafumi Yamashita,et al.  On space complexity of self-stabilizing leader election in mediated population protocol , 2012, Distributed Computing.

[35]  Amos Israeli,et al.  Self-stabilization of dynamic systems assuming only read/write atomicity , 1990, PODC '90.

[36]  V. Zamaraev,et al.  Sharp Thresholds in Random Simple Temporal Graphs , 2020, 2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS).

[37]  Yukiko Yamauchi,et al.  Space Complexity of Self-Stabilizing Leader Election in Population Protocol Based on k-Interaction , 2013, SSS.

[38]  Michael J. Fischer,et al.  Computation in networks of passively mobile finite-state sensors , 2004, PODC '04.

[39]  Fukuhito Ooshita,et al.  Time-Optimal Leader Election in Population Protocols , 2020, IEEE Transactions on Parallel and Distributed Systems.

[40]  Fukuhito Ooshita,et al.  Logarithmic Expected-Time Leader Election in Population Protocol Model , 2019, PODC.

[41]  David Eisenstat,et al.  Fast computation by population protocols with a leader , 2006, Distributed Computing.

[42]  Dan Alistarh,et al.  Space-Optimal Majority in Population Protocols , 2017, SODA.

[43]  David Soloveichik,et al.  Stable Leader Election in Population Protocols Requires Linear Time , 2015, DISC.

[44]  Johanne Cohen,et al.  Homonym Population Protocols , 2017, Theory of Computing Systems.

[45]  Toshimitsu Masuzawa,et al.  Leader Election Requires Logarithmic Time in Population Protocols , 2020, Parallel Process. Lett..

[46]  Michael J. Fischer,et al.  Self-stabilizing Population Protocols , 2005, OPODIS.

[47]  M. Drmota Random Trees: An Interplay between Combinatorics and Probability , 2009 .

[48]  Joffroy Beauquier,et al.  Self-stabilizing Counting in Mobile Sensor Networks with a Base Station , 2007, DISC.

[49]  Michael J. Fischer,et al.  A simple game for the study of trust in distributed systems , 2009, Wuhan University Journal of Natural Sciences.

[50]  Boaz Patt-Shamir,et al.  Self-Stabilization by Local Checking and Global Reset (Extended Abstract) , 1994, WDAG.

[51]  Luc Devroye,et al.  The height of increasing trees , 2008, Random Struct. Algorithms.

[52]  Shlomi Dolev,et al.  Self Stabilization , 2004, J. Aerosp. Comput. Inf. Commun..

[53]  Dan Alistarh,et al.  Recent Algorithmic Advances in Population Protocols , 2018, SIGA.

[54]  Population protocols with faulty interactions: The impact of a leader , 2019, Theor. Comput. Sci..

[55]  Paul G. Spirakis,et al.  New Models for Population Protocols , 2011, Synthesis Lectures on Distributed Computing Theory.

[56]  George Giakkoupis,et al.  Optimal time and space leader election in population protocols , 2020, STOC.

[57]  Rupak Majumdar,et al.  Verification of population protocols , 2016, Acta Informatica.

[58]  Fukuhito Ooshita,et al.  Logarithmic Expected-Time Leader Election in Population Protocol Model , 2019, SSS.

[59]  Dan Alistarh,et al.  Robust Detection in Leak-Prone Population Protocols , 2017, DNA.

[60]  Edsger W. Dijkstra,et al.  Self-stabilizing systems in spite of distributed control , 1974, CACM.

[61]  David E. Culler,et al.  Versatile low power media access for wireless sensor networks , 2004, SenSys '04.

[62]  Joffroy Beauquier,et al.  Space-Optimal Counting in Population Protocols , 2015, DISC.

[63]  Toshimitsu Masuzawa,et al.  Time-Optimal Self-Stabilizing Leader Election on Rings in Population Protocols , 2020, SSS.

[64]  Dan Alistarh,et al.  Fast Randomized Test-and-Set and Renaming , 2010, DISC.

[65]  D. Gillespie Exact Stochastic Simulation of Coupled Chemical Reactions , 1977 .

[66]  Rachid Guerraoui,et al.  When Birds Die: Making Population Protocols Fault-Tolerant , 2006, DCOSS.

[67]  Paul G. Spirakis,et al.  Naming and Counting in Anonymous Unknown Dynamic Networks , 2012, SSS.

[68]  Moti Yung,et al.  Memory-Efficient Self Stabilizing Protocols for General Networks , 1990, WDAG.