On the Structure of Inversive Pseudorandom Number Generators

We analyze the lattice structure and linear complexity of a new inversive pseudorandom number generator recently introduced by Niederreiter and Rivat. In particular, we introduce a new lattice test which is much stronger than its predecessors and prove that this new generator passes it up to very high dimensions. Such a result cannot be obtained for the conventional inversive generator with currently known methods. We also analyze the behavior of two explicit inversive generators under this new test and present lower bounds on the linear complexity profile of binary sequences derived from these three inversive generators.

[1]  Stefan Wegenkittl,et al.  A survey of quadratic and inversive congruential pseudorandom numbers , 1998 .

[2]  R. Caflisch Monte Carlo and quasi-Monte Carlo methods , 1998, Acta Numerica.

[3]  Wilfried Meidl,et al.  Counting functions and expected values for the lattice profile at n , 2004, Finite Fields Their Appl..

[4]  Harald Niederreiter,et al.  On the counting function of the lattice profile of periodic sequences , 2007, J. Complex..

[5]  Arne Winterhof,et al.  Lattice Structure of Nonlinear Pseudorandom Number Generators in Parts of the Period , 2004 .

[6]  Harald Niederreiter,et al.  Successive minima profile, lattice profile, and joint linear complexity profile of pseudorandom multisequences , 2008, J. Complex..

[7]  András Sárközy,et al.  On finite pseudorandom binary sequences I: Measure of pseudorandomness, the Legendre symbol , 1997 .

[8]  Wilfried Meidl,et al.  On the linear complexity profile of some new explicit inversive pseudorandom numbers , 2004, J. Complex..

[9]  Igor E. Shparlinski,et al.  On the Distribution of Pseudorandom Numbers and Vectors Generated by Inversive Methods , 2000, Applicable Algebra in Engineering, Communication and Computing.

[10]  Harald Niederreiter,et al.  Pseudorandom vector generation by the inversive method , 1994, TOMC.

[11]  Harald Niederreiter,et al.  On the correlation of pseudorandom numbers generated by inversive methods , 2008 .

[12]  Gary L. Mullen,et al.  Finite Fields and Applications , 2007, Student mathematical library.

[13]  András Sárközy,et al.  Construction of pseudorandom binary sequences by using the multiplicative inverse , 2005 .

[14]  Peter Zinterhof,et al.  Monte Carlo and Quasi-Monte Carlo Methods 1996 , 1998 .

[15]  Harald Niederreiter,et al.  Monte Carlo and Quasi-Monte Carlo Methods 2002 , 2004 .

[16]  Zhixiong Chen Finite binary sequences constructed by explicit inversive methods , 2008, Finite Fields Their Appl..

[17]  Jürgen Lehn,et al.  A non-linear congruential pseudo random number generator , 1986 .

[18]  J. Eichenauer-Herrmann Statistical independence of a new class of inversive congruential pseudorandom numbers , 1993 .

[19]  Arne Winterhof,et al.  Linear complexity profile of binary sequences with small correlation measure , 2006, Period. Math. Hung..

[20]  H. Keng,et al.  Applications of number theory to numerical analysis , 1981 .

[21]  András Sárközy,et al.  On Finite Pseudorandom Binary Sequences: II. The Champernowne, Rudin–Shapiro, and Thue–Morse Sequences, A Further Construction , 1998 .

[22]  Wun-Seng Chou The Period Lengths of Inversive Pseudorandom Vector Generations , 1995 .

[23]  G. Marsaglia The Structure of Linear Congruential Sequences , 1972 .

[24]  Arne Winterhof,et al.  On the Distribution of Some New Explicit Inversive Pseudorandom Numbers and Vectors , 2006 .

[25]  Wilfried Meidl,et al.  On the linear complexity profile of explicit nonlinear pseudorandom numbers , 2003, Inf. Process. Lett..

[26]  Arne Winterhof,et al.  Lattice Structure and Linear Complexity Profile of Nonlinear Pseudorandom Number Generators , 2003, Applicable Algebra in Engineering, Communication and Computing.

[27]  Harald Niederreiter,et al.  Lattice Structure and Linear Complexity of Nonlinear Pseudorandom Numbers , 2002, Applicable Algebra in Engineering, Communication and Computing.

[28]  Fred J. Hickernell,et al.  Monte Carlo and Quasi-Monte Carlo Methods 2000 , 2002 .

[29]  Harald Niederreiter,et al.  Monte Carlo and quasi-Monte Carlo methods 2004 , 2006 .

[30]  Igor E. Shparlinski,et al.  Recent Advances in the Theory of Nonlinear Pseudorandom Number Generators , 2002 .

[31]  Igor E. Shparlinski,et al.  On the linear and nonlinear complexity profile of nonlinear pseudorandom number generators , 2003, IEEE Trans. Inf. Theory.