Reference Frames for Spatial Cognition: Different Brain Areas are Involved in Viewer-, Object-, and Landmark-Centered Judgments About Object Location

Functional magnetic resonance imaging was used to compare the neural correlates of three different types of spatial coding, which are implicated in crucial cognitive functions of our everyday life, such as visuomotor coordination and orientation in topographical space. By manipulating the requested spatial reference during a task of relative distance estimation, we directly compared viewer-centered, object-centered, and landmark-centered spatial coding of the same realistic 3-D information. Common activation was found in bilateral parietal, occipital, and right frontal premotor regions. The retrosplenial and ventromedial occipitaltemporal cortex (and parts of the parietal and occipital cortex) were significantly more activated during the landmark-centered condition. The ventrolateral occipitaltemporal cortex was particularly involved in object-centered coding. Results strongly demonstrate that viewer-centered (egocentric) coding is restricted to the dorsal stream and connected frontal regions, whereas a coding centered on external references requires both dorsal and ventral regions, depending on the reference being a movable object or a landmark.

[1]  R. Bálint Seelenlähmung des “Schauens”, optische Ataxie, räumliche Störung der Aufmerksamkeit. pp. 51–66 , 1909 .

[2]  G Holmes,et al.  DISTURBANCES OF VISUAL ORIENTATION , 1918, The British journal of ophthalmology.

[3]  R. C. Oldfield The assessment and analysis of handedness: the Edinburgh inventory. , 1971, Neuropsychologia.

[4]  R. C. Oldfield THE ASSESSMENT AND ANALYSIS OF HANDEDNESS , 1971 .

[5]  J. O'Keefe,et al.  The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. , 1971, Brain research.

[6]  J. Mohr,et al.  Inaccurate reaching associated with a superior parietal lobe tumor , 1978, Neurology.

[7]  M. Eckardt The Hippocampus as a Cognitive Map , 1980 .

[8]  Ian P. Howard,et al.  Human visual orientation , 1982 .

[9]  K. Cheng A purely geometric module in the rat's spatial representation , 1986, Cognition.

[10]  A. Sirigu,et al.  Pure Topographical Disorientation: A Definition and Anatomical Basis , 1987, Cortex.

[11]  M. Perenin,et al.  Optic ataxia: a specific disruption in visuomotor mechanisms. I. Different aspects of the deficit in reaching for objects. , 1988, Brain : a journal of neurology.

[12]  J. Talairach,et al.  Co-Planar Stereotaxic Atlas of the Human Brain: 3-Dimensional Proportional System: An Approach to Cerebral Imaging , 1988 .

[13]  M. Jeannerod,et al.  [Egocentric reference and represented space]. , 1989, Revue neurologique.

[14]  B. McNaughton,et al.  Cortical-hippocampal interactions and cognitive mapping: A hypothesis based on reintegration of the parietal and inferotemporal pathways for visual processing , 1989 .

[15]  C. Bruce,et al.  Primate frontal eye fields. III. Maintenance of a spatially accurate saccade signal. , 1990, Journal of neurophysiology.

[16]  R U Muller,et al.  Head-direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[17]  永福 智志 The Organization of Learning , 2005, Journal of Cognitive Neuroscience.

[18]  B. McNaughton,et al.  Dead Reckoning, Landmark Learning, and the Sense of Direction: A Neurophysiological and Computational Hypothesis , 1991, Journal of Cognitive Neuroscience.

[19]  E. Cabanis,et al.  The Human Brain: Surface, Three-Dimensional Sectional Anatomy and Mri , 1991 .

[20]  R. Turner,et al.  Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[21]  Alan C. Evans,et al.  A Three-Dimensional Statistical Analysis for CBF Activation Studies in Human Brain , 1992, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[22]  P. Goldman-Rakic,et al.  Dissociation of object and spatial processing domains in primate prefrontal cortex. , 1993, Science.

[23]  K. Nakamura,et al.  Monkey hippocampal neurons related to spatial and nonspatial functions. , 1993, Journal of neurophysiology.

[24]  W. Bank The Human Brain. Surface, Three-Dimensional Sectional Anatomy and MRI , 1993 .

[25]  Glyn W. Humphreys,et al.  Attention to within-object and between-object spatial representations: multiple sites for visual selection , 1994 .

[26]  Karl J. Friston,et al.  Assessing the significance of focal activations using their spatial extent , 1994, Human brain mapping.

[27]  Elizabeth S. Spelke,et al.  A geometric process for spatial reorientation in young children , 1994, Nature.

[28]  D. Amaral,et al.  Perirhinal and parahippocampal cortices of the macaque monkey: Cortical afferents , 1994, The Journal of comparative neurology.

[29]  Karl J. Friston,et al.  Analysis of functional MRI time‐series , 1994, Human Brain Mapping.

[30]  W. Suzuki,et al.  Topographic organization of the reciprocal connections between the monkey entorhinal cortex and the perirhinal and parahippocampal cortices , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[31]  Arthur W. Toga,et al.  A Probabilistic Atlas of the Human Brain: Theory and Rationale for Its Development The International Consortium for Brain Mapping (ICBM) , 1995, NeuroImage.

[32]  C R Olson,et al.  Object-centered direction selectivity in the macaque supplementary eye field , 1995, Science.

[33]  E. Rolls,et al.  View‐responsive neurons in the primate hippocampal complex , 1995, Hippocampus.

[34]  Richard S. J. Frackowiak,et al.  The Mind's Eye—Precuneus Activation in Memory-Related Imagery , 1995, NeuroImage.

[35]  P E Sharp,et al.  Influences of vestibular and visual motion information on the spatial firing patterns of hippocampal place cells , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[36]  Karl J. Friston,et al.  Spatial registration and normalization of images , 1995 .

[37]  G. Rizzolatti,et al.  Premotor cortex and the recognition of motor actions. , 1996, Brain research. Cognitive brain research.

[38]  G. Rizzolatti,et al.  Action recognition in the premotor cortex. , 1996, Brain : a journal of neurology.

[39]  Karl J. Friston,et al.  Detecting Activations in PET and fMRI: Levels of Inference and Power , 1996, NeuroImage.

[40]  Alan C. Evans,et al.  CHAPTER 64 – A Unified Statistical Approach for Determining Significant Signals in Location and Scale Space Images of Cerebral Activation , 1996 .

[41]  M. D’Esposito,et al.  The parahippocampus subserves topographical learning in man , 1996, NeuroImage.

[42]  Karl J. Friston,et al.  A unified statistical approach for determining significant signals in images of cerebral activation , 1996, Human brain mapping.

[43]  Richard S. J. Frackowiak,et al.  Learning to find your way: a role for the human hippocampal formation , 1996, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[44]  C. Butter,et al.  Ipsilesional Displacement of Egocentric Midline in Neglect Patients with, but Not in Those Without, Extensive Right Parietal Damage , 1997 .

[45]  Giuseppe Vallar,et al.  Modulation of the Neglect Syndrome by Sensory Stimulation , 1997 .

[46]  C D Frith,et al.  Space-based and object-based visual attention: shared and specific neural domains. , 1997, Brain : a journal of neurology.

[47]  A Berthoz,et al.  Parietal and hippocampal contribution to topokinetic and topographic memory. , 1997, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[48]  M. D’Esposito,et al.  Environmental Knowledge Is Subserved by Separable Dorsal/Ventral Neural Areas , 1997, The Journal of Neuroscience.

[49]  Richard S. J. Frackowiak,et al.  Recalling Routes around London: Activation of the Right Hippocampus in Taxi Drivers , 1997, The Journal of Neuroscience.

[50]  B Milner,et al.  Right medial temporal-lobe contribution to object-location memory. , 1997, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[51]  Peter Thier,et al.  Parietal Lobe Contributions to Orientation in 3D Space , 1997 .

[52]  F. Lacquaniti,et al.  Visuomotor Transformations for Reaching to Memorized Targets: A PET Study , 1997, NeuroImage.

[53]  M. Perenin,et al.  Optic Ataxia and Unilateral Neglect: Clinical Evidence for Dissociable Spatial Functions in Posterior Parietal Cortex , 1997 .

[54]  Edoardo Bisiach,et al.  The Spatial Features of Unilateral Neglect , 1997 .

[55]  A. Berthoz,et al.  Mental navigation along memorized routes activates the hippocampus, precuneus, and insula , 1997, Neuroreport.

[56]  K. Nakayama,et al.  Binocular Rivalry and Visual Awareness in Human Extrastriate Cortex , 1998, Neuron.

[57]  Richard A. Andersen,et al.  Separate body- and world-referenced representations of visual space in parietal cortex , 1998, Nature.

[58]  Nancy Kanwisher,et al.  A cortical representation of the local visual environment , 1998, Nature.

[59]  Karl J. Friston,et al.  Generalisability, Random Effects & Population Inference , 1998, NeuroImage.

[60]  C. Colby Action-Oriented Spatial Reference Frames in Cortex , 1998, Neuron.

[61]  Richard S. J. Frackowiak,et al.  Knowing where and getting there: a human navigation network. , 1998, Science.

[62]  N. Kanwisher,et al.  Covert visual attention modulates face-specific activity in the human fusiform gyrus: fMRI study. , 1998, Journal of neurophysiology.

[63]  N Burgess,et al.  Place cells, navigational accuracy, and the human hippocampus. , 1998, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[64]  E. Maguire,et al.  Knowing Where Things Are: Parahippocampal Involvement in Encoding Object Locations in Virtual Large-Scale Space , 1998, Journal of Cognitive Neuroscience.

[65]  Jon Driver,et al.  Egocentric and object-based visual neglect , 1998 .

[66]  S P Wise,et al.  Cortical areas with enhanced activation during object-centred spatial information processing. A PET study. , 1998, Brain : a journal of neurology.

[67]  M. D’Esposito,et al.  An Area within Human Ventral Cortex Sensitive to “Building” Stimuli Evidence and Implications , 1998, Neuron.

[68]  Leslie G. Ungerleider,et al.  An area specialized for spatial working memory in human frontal cortex. , 1998, Science.

[69]  E. Rolls,et al.  Spatial view cells in the primate hippocampus: allocentric view not head direction or eye position or place. , 1999, Cerebral cortex.

[70]  Karl J. Friston,et al.  How Many Subjects Constitute a Study? , 1999, NeuroImage.

[71]  M. D’Esposito,et al.  Topographical disorientation: a synthesis and taxonomy. , 1999, Brain : a journal of neurology.

[72]  H. Duvernoy The Human Brain , 1999, Springer Vienna.

[73]  Russell A. Epstein,et al.  The Parahippocampal Place Area Recognition, Navigation, or Encoding? , 1999, Neuron.

[74]  Nancy Kanwisher,et al.  fMRI evidence for objects as the units of attentional selection , 1999, Nature.

[75]  D. Boussaoud,et al.  Gaze effects in the cerebral cortex: reference frames for space coding and action , 1999, Experimental Brain Research.

[76]  Alain Berthoz,et al.  A fronto-parietal system for computing the egocentric spatial frame of reference in humans , 1999, Experimental Brain Research.

[77]  Leslie G. Ungerleider,et al.  The Effect of Face Inversion on Activity in Human Neural Systems for Face and Object Perception , 1999, Neuron.

[78]  S. Edelman,et al.  Differential Processing of Objects under Various Viewing Conditions in the Human Lateral Occipital Complex , 1999, Neuron.

[79]  F. Patria,et al.  Psychophysical Properties of Line Bisection and Body Midline Perception in Unilateral Neglect , 2000, Cortex.

[80]  A. Wunderlich,et al.  Brain activation during human navigation: gender-different neural networks as substrate of performance , 2000, Nature Neuroscience.

[81]  S. Bricogne,et al.  Neural Correlates of Topographic Mental Exploration: The Impact of Route versus Survey Perspective Learning , 2000, NeuroImage.

[82]  K. Zilles,et al.  Line bisection judgments implicate right parietal cortex and cerebellum as assessed by fMRI , 2000, Neurology.

[83]  K. Zilles,et al.  Neural consequences of acting in near versus far space: a physiological basis for clinical dissociations. , 2000, Brain : a journal of neurology.

[84]  N. Kanwisher,et al.  Mental Imagery of Faces and Places Activates Corresponding Stimulus-Specific Brain Regions , 2000, Journal of Cognitive Neuroscience.

[85]  Gereon R Fink,et al.  ‘Where’ depends on ‘what’: A differential functional anatomy for position discrimination in one- versus two-dimensions , 2000, Neuropsychologia.

[86]  E. Spelke,et al.  Updating egocentric representations in human navigation , 2000, Cognition.

[87]  A. Berthoz,et al.  The neural basis of egocentric and allocentric coding of space in humans: a functional magnetic resonance study , 2000, Experimental Brain Research.

[88]  Russell A. Epstein,et al.  Neuropsychological evidence for a topographical learning mechanism in parahippocampal cortex , 2001, Cognitive neuropsychology.

[89]  J. Sanes,et al.  Spatial coding of visual and somatic sensory information in body‐centred coordinates , 2001, The European journal of neuroscience.

[90]  A. Berthoz,et al.  Localization of human frontal eye fields: anatomical and functional findings of functional magnetic resonance imaging and intracerebral electrical stimulation. , 2001, Journal of neurosurgery.

[91]  J. Huttenlocher,et al.  Toddlers' use of metric information and landmarks to reorient. , 2001, Journal of experimental child psychology.

[92]  P. Strick,et al.  Imaging the premotor areas , 2001, Current Opinion in Neurobiology.

[93]  N Burgess,et al.  Bilateral hippocampal pathology impairs topographical and episodic memory but not visual pattern matching , 2001, Hippocampus.

[94]  E. Maguire The retrosplenial contribution to human navigation: a review of lesion and neuroimaging findings. , 2001, Scandinavian journal of psychology.

[95]  Catherine Thinus-Blanc,et al.  Rhesus monkeys use geometric and nongeometric information during a reorientation task , 2001 .

[96]  Georg Kerkhoff,et al.  Spatial hemineglect in humans , 2001, Progress in Neurobiology.

[97]  C Thinus-Blanc,et al.  Rhesus monkeys use geometric and nongeometric information during a reorientation task. , 2001, Journal of experimental psychology. General.

[98]  E. Spelke,et al.  Children's use of geometry and landmarks to reorient in an open space , 2001, Cognition.

[99]  N. Tzourio-Mazoyer,et al.  Automated Anatomical Labeling of Activations in SPM Using a Macroscopic Anatomical Parcellation of the MNI MRI Single-Subject Brain , 2002, NeuroImage.

[100]  Yale E. Cohen,et al.  A common reference frame for movement plans in the posterior parietal cortex , 2002, Nature Reviews Neuroscience.

[101]  E. Spelke,et al.  Human Spatial Representation: Insights from Animals , 2002 .

[102]  E. Maguire,et al.  The Human Hippocampus and Spatial and Episodic Memory , 2002, Neuron.

[103]  G. Rizzolatti,et al.  Motor and cognitive functions of the ventral premotor cortex , 2002, Current Opinion in Neurobiology.

[104]  M. Petrides,et al.  Cognitive Strategies Dependent on the Hippocampus and Caudate Nucleus in Human Navigation: Variability and Change with Practice , 2003, The Journal of Neuroscience.

[105]  Talma Hendler,et al.  Spatial vs. object specific attention in high-order visual areas , 2003, NeuroImage.

[106]  Rafael Malach,et al.  Large-Scale Mirror-Symmetry Organization of Human Occipito-Temporal Object Areas , 2003, Neuron.

[107]  A. Berthoz,et al.  Rapid Spatial Reorientation and Head Direction Cells , 2003, The Journal of Neuroscience.

[108]  Paul E. Downing,et al.  Viewpoint-Specific Scene Representations in Human Parahippocampal Cortex , 2003, Neuron.

[109]  E. Maguire,et al.  The Well-Worn Route and the Path Less Traveled Distinct Neural Bases of Route Following and Wayfinding in Humans , 2003, Neuron.

[110]  Carol A. Barnes,et al.  Head-direction cells in the rat posterior cortex , 1994, Experimental Brain Research.