Accelerated hardware video object segmentation: From foreground detection to connected components labelling

[1]  Gerald Schaefer,et al.  Fuzzy c-means variants for medical image segmentation , 2010 .

[2]  José María Martínez Sanchez,et al.  Comparative Evaluation of Stationary Foreground Object Detection Algorithms Based on Background Subtraction Techniques , 2009, 2009 Sixth IEEE International Conference on Advanced Video and Signal Based Surveillance.

[3]  Gerald Schaefer,et al.  Anisotropic Mean Shift Based Fuzzy C-Means Segmentation of Dermoscopy Images , 2009, IEEE Journal of Selected Topics in Signal Processing.

[4]  Andrew Hunter,et al.  A run-length based connected component algorithm for FPGA implementation , 2008, 2008 International Conference on Field-Programmable Technology.

[5]  Donald G. Bailey,et al.  Optimised single pass connected components analysis , 2008, 2008 International Conference on Field-Programmable Technology.

[6]  Hélène Laurent,et al.  Review and evaluation of commonly-implemented background subtraction algorithms , 2008, 2008 19th International Conference on Pattern Recognition.

[7]  G. Schaefer,et al.  A mean shift based fuzzy c-means algorithm for image segmentation , 2008, 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[8]  Gareth Funka-Lea,et al.  Graph Cuts and Efficient N-D Image Segmentation , 2006, International Journal of Computer Vision.

[9]  Andrew Hunter,et al.  A single-chip FPGA implementation of real-time adaptive background model , 2005, Proceedings. 2005 IEEE International Conference on Field-Programmable Technology, 2005..

[10]  C. T. Johnston Implementing Image Processing Algorithms on FPGAs , 2005 .

[11]  Richard Hornsey,et al.  FPGA implementation of real-time adaptive image thresholding , 2004, Photonics North.

[12]  Massimo Piccardi,et al.  Background subtraction techniques: a review , 2004, 2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No.04CH37583).

[13]  Miriam Leeser,et al.  Smart camera based on reconfigurable hardware enables diverse real-time applications , 2004, 12th Annual IEEE Symposium on Field-Programmable Custom Computing Machines.

[14]  João M. P. Cardoso,et al.  A Real Time Gesture Recognition System for Mobile Robots , 2004, ICINCO.

[15]  Rita Cucchiara,et al.  Detecting Moving Objects, Ghosts, and Shadows in Video Streams , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  Danny Crookes,et al.  An FPGA-Based Image Connected Component Labeller , 2003, FPL.

[17]  Andreas Koch,et al.  Fast Region Labeling on the Reconfigurable Platform ACE-V , 2003, FPL.

[18]  Peter Lee,et al.  An FPGA implementation of a flexible, parallel image processing architecture suitable for embedded vision systems , 2003, Proceedings International Parallel and Distributed Processing Symposium.

[19]  L. Davis,et al.  Background and foreground modeling using nonparametric kernel density estimation for visual surveillance , 2002, Proc. IEEE.

[20]  Joan Batlle,et al.  A New FPGA/DSP-Based Parallel Architecture for Real-Time Image Processing , 2002, Real Time Imaging.

[21]  D. Comaniciu,et al.  The variable bandwidth mean shift and data-driven scale selection , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[22]  Anil K. Jain,et al.  A background model initialization algorithm for video surveillance , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[23]  Sergio A. Velastin,et al.  Automatic congestion detection system for underground platforms , 2001, Proceedings of 2001 International Symposium on Intelligent Multimedia, Video and Speech Processing. ISIMP 2001 (IEEE Cat. No.01EX489).

[24]  Phalguni Gupta,et al.  Finding connected components in digital images , 2001, Proceedings International Conference on Information Technology: Coding and Computing.

[25]  W. Eric L. Grimson,et al.  Learning Patterns of Activity Using Real-Time Tracking , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[26]  Larry S. Davis,et al.  Non-parametric Model for Background Subtraction , 2000, ECCV.

[27]  Carl G. Looney,et al.  Fast connected component labeling algorithm using a divide and conquer technique , 2000, CATA.

[28]  Danny Crookes,et al.  FPGA implementation of image component labeling , 1999, Optics East.

[29]  W. Eric L. Grimson,et al.  Adaptive background mixture models for real-time tracking , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[30]  Larry S. Davis,et al.  W/sup 4/: Who? When? Where? What? A real time system for detecting and tracking people , 1998, Proceedings Third IEEE International Conference on Automatic Face and Gesture Recognition.

[31]  Alex Pentland,et al.  Pfinder: Real-Time Tracking of the Human Body , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[32]  Aleksej Makarov Comparison of background extraction based intrusion detection algorithms , 1996, Proceedings of 3rd IEEE International Conference on Image Processing.

[33]  Azriel Rosenfeld,et al.  Real-Time Parallel Computing: Imaging Analysis , 1981 .

[34]  R. M. Haralick Some Neighborhood Operators , 1981 .

[35]  Azriel Rosenfeld,et al.  Sequential Operations in Digital Picture Processing , 1966, JACM.