Use of ab initio methods for the interpretation of the experimental IR reflectance spectra of crystalline compounds

It is shown that ab initio simulation can be used as a powerful complementary tool in the interpretation of the experimental reflectance spectra R(ν) of crystalline compounds. Experimental frequencies and intensities are obtained from a best fit of R(ν) with a set of damped harmonic oscillators, whose number and initial position in frequency can dramatically influence the final results, as the parameters are strongly correlated. Computed ab initio values for frequencies and intensities are accurate enough to represent an excellent starting point for the best fit process. Moreover, at variance with respect to experiment, simulation permits to identify all the symmetry allowed modes, also when characterized by low intensity or when close to a very intense peak. Overall, simulation‐aided analysis of experimental spectra prevents from classifying combination modes as fundamental modes and permits to discard artifacts due to superposition of bands, background, and noise. Finally, it allows to (almost) completely characterize the set of fundamental modes. © 2013 Wiley Periodicals, Inc.

[1]  Roberto Dovesi,et al.  Well localized crystalline orbitals obtained from Bloch functions: The case of KNbO 3 , 2001 .

[2]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[3]  L. J. Schaad,et al.  Ab initio calculations of vibrational spectra and their use in the identification of unusual molecules , 1986 .

[4]  Roberto Dovesi,et al.  Performance of six functionals (LDA, PBE, PBESOL, B3LYP, PBE0, and WC1LYP) in the simulation of vibrational and dielectric properties of crystalline compounds. The case of forsterite Mg2SiO4 , 2011, J. Comput. Chem..

[5]  Roberto Dovesi,et al.  The calculation of static polarizabilities of 1‐3D periodic compounds. the implementation in the crystal code , 2008, J. Comput. Chem..

[6]  R. Dovesi,et al.  Ab initio quantum-mechanical prediction of the IR and Raman spectra of Ca3Cr2Si3O12 uvarovite garnet , 2010 .

[7]  R. Dovesi,et al.  Physico-Chemical Features of Aluminum Hydroxides As Modeled with the Hybrid B3LYP Functional and Localized Basis Functions , 2011 .

[8]  W. Spitzer,et al.  Theory of the Optical Properties of Quartz in the Infrared , 1962 .

[9]  R. Dovesi,et al.  The IR vibrational properties of six members of the garnet family: A quantum mechanical ab initio study , 2011 .

[10]  B. Wyncke,et al.  Calculation of the reflectivity spectra dependence on the angle of incidence in anisotropic absorbing crystals, application to sodium nitrite , 1990 .

[11]  R. Orlando,et al.  The calculation of the static first and second susceptibilities of crystalline urea: A comparison of Hartree-Fock and density functional theory results obtained with the periodic coupled perturbed Hartree-Fock/Kohn-Sham scheme. , 2009, The Journal of chemical physics.

[12]  R. Orlando,et al.  Ab initioquantum-mechanical simulation of the Raman spectrum of grossular , 2009 .

[13]  Infrared spectra of fayalite crystal , 2002 .

[14]  Dwight W. Berreman,et al.  Adjusting Poles and Zeros of Dielectric Dispersion to Fit Reststrahlen of Pr Cl 3 and La Cl 3 , 1968 .

[15]  Alfredo Pasquarello,et al.  Raman scattering intensities in α-quartz: A first-principles investigation , 2001 .

[16]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[17]  A. Tsuchiyama,et al.  Infrared reflection spectra of forsterite crystal , 2006 .

[18]  R. Orlando,et al.  The vibrational spectrum of calcite (CaCO3): an ab initio quantum-mechanical calculation , 2004 .

[19]  Roberto Dovesi,et al.  Coupled perturbed Hartree-Fock for periodic systems: the role of symmetry and related computational aspects. , 2008, The Journal of chemical physics.

[20]  A. Hofmeister,et al.  Single-crystal IR spectroscopy of pyrope-almandine garnets with minor amounts of Mn and Ca , 1996 .

[21]  Roberto Dovesi,et al.  Calculation of first and second static hyperpolarizabilities of one- to three-dimensional periodic compounds. Implementation in the CRYSTAL code. , 2008, The Journal of chemical physics.

[22]  R. Dovesi,et al.  Polarization properties of ZnO and BeO: An ab initio study through the Berry phase and Wannier functions approaches , 2001 .

[23]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[24]  M. Frisch,et al.  Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields , 1994 .

[25]  John P. McTague,et al.  Molecular Vibrations in Crystals , 1978 .

[26]  R. Orlando,et al.  Quantum-mechanical ab initio simulation of the Raman and IR spectra of Fe3Al2Si3O12 almandine. , 2009, The journal of physical chemistry. A.

[27]  Roberto Dovesi,et al.  Spontaneous polarization as a Berry phase of the Hartree-Fock wave function: The case of KNbO 3 , 1997 .

[28]  R. Dovesi,et al.  Quantum-mechanical ab initio simulation of the Raman and IR spectra of Mn3Al2Si3O12 spessartine , 2009 .

[29]  R. Dovesi,et al.  Electronic Structure, Dielectric Properties and Infrared Vibrational Spectrum of Fayalite: An Ab Initio Simulation With an All-Electron Gaussian Basis Set and the B3LYP Functional , 2012 .

[30]  F. Gervais,et al.  Anharmonicity in several-polar-mode crystals: adjusting phonon self-energy of LO and TO modes in Al2O3 and TiO2 to fit infrared reflectivity , 1974 .

[31]  D. Sánchez-Portal,et al.  The SIESTA method for ab initio order-N materials simulation , 2001, cond-mat/0111138.

[32]  Bartolomeo Civalleri,et al.  The calculation of the vibrational frequencies of crystalline compounds and its implementation in the CRYSTAL code , 2004, J. Comput. Chem..

[33]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[34]  A. Tsuchiyama,et al.  Low-temperature single crystal reflection spectra of forsterite , 2006 .

[35]  Bartolomeo Civalleri,et al.  CRYSTAL: a computational tool for the ab initio study of the electronic properties of crystals , 2005 .

[36]  R. Orlando,et al.  Calculation of the vibration frequencies of α‐quartz: The effect of Hamiltonian and basis set , 2004, J. Comput. Chem..

[37]  J. Tranquada,et al.  Stripe Order and Vibrational Properties of La{2}NiO{4+delta}for delta=2/15: Measurements and Ab Initio Calculations , 2007 .

[38]  Xavier Gonze,et al.  Dynamical matrices, born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory , 1997 .

[39]  R. Orlando,et al.  Vibrational spectrum of katoite Ca3Al2[(OH)4]3: a periodic ab initio study. , 2006, The journal of physical chemistry. B.

[40]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[41]  A. Hofmeister,et al.  Single-crystal IR spectroscopy of grossular-andradite garnets , 1995 .

[42]  François Gervais,et al.  Temperature dependence of transverse- and longitudinal-optic modes in TiO 2 (rutile) , 1974 .

[43]  M. Born,et al.  Dynamical Theory of Crystal Lattices , 1954 .

[44]  Roberto Dovesi,et al.  Ab initio simulation of the IR spectra of pyrope, grossular, and andradite , 2008, J. Comput. Chem..

[45]  H. Suto,et al.  The infrared spectrum of ortho-enstatite from reflectance experiments and first-principle simulations , 2012 .

[46]  A. Chopelas,et al.  Vibrational spectroscopy of end-member silicate garnets , 1991 .