Techno-economic optimisation of hydrogen production by PV — electrolysis: RenHydrogen simulation program

Abstract The work concerns the optimisation of hydrogen production by electrolysis using renewable energy resources. To achieve this aim, the techno-economic analysis was dedicated to a system composed of PV panels and an electrolyser, including all associated technology such as the chopper circuit 1 . The first step was to complete a LabVIEW simulation program which was able to reproduce a photovoltaic (PV) plant connected to the alkaline electrolyser. The virtual instrument was developed on the basis of the models of incident radiation, PV cells and electrolyser. After the indication of PV cell type and number, tilt of all panels, number of strings 2 , latitude and main characteristics of the electrolyser (e.g. nominal power, number of electrolytic cells, working temperature and pressure), the program computes the hydrogen produced, the electrolyser running hours and other data, for a chosen period of the year. Differently tilted photovoltaic panels were considered either directly coupled with the electrolyser or connected via a DC converter between the two systems. The simulation program, called “RenHydrogen”, provides a qualitative calculation of the hydrogen production during the whole year, comparing different technological options and leading to the techno-economic optimisation of the PV-electrolysis system.