An Explicit High-Order Single-Stage Single-Step Positivity-Preserving Finite Difference WENO Method for the Compressible Euler Equations

In this work we construct a high-order, single-stage, single-step positivity-preserving method for the compressible Euler equations. Space is discretized with the finite difference weighted essentially non-oscillatory method. Time is discretized through a Lax–Wendroff procedure that is constructed from the Picard integral formulation of the partial differential equation. The method can be viewed as a modified flux approach, where a linear combination of a low- and high-order flux defines the numerical flux used for a single-step update. The coefficients of the linear combination are constructed by solving a simple optimization problem at each time step. The high-order flux itself is constructed through the use of Taylor series and the Cauchy–Kowalewski procedure that incorporates higher-order terms. Numerical results in one- and two-dimensions are presented.

[1]  Chi-Wang Shu,et al.  High Order Weighted Essentially Nonoscillatory Schemes for Convection Dominated Problems , 2009, SIAM Rev..

[2]  P. Roe Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .

[3]  Chao Liang,et al.  Parametrized Maximum Principle Preserving Flux Limiters for High Order Schemes Solving Multi-Dimensional Scalar Hyperbolic Conservation Laws , 2014, J. Sci. Comput..

[4]  Kun Xu,et al.  Positivity-Preserving Analysis of Explicit and Implicit Lax–Friedrichs Schemes for Compressible Euler Equations , 2000, J. Sci. Comput..

[5]  Xiangxiong Zhang,et al.  Positivity-preserving high order finite difference WENO schemes for compressible Euler equations , 2012, J. Comput. Phys..

[6]  Xiangxiong Zhang,et al.  On positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes , 2010, J. Comput. Phys..

[7]  David C. Seal,et al.  The Picard Integral Formulation of Weighted Essentially Nonoscillatory Schemes , 2014, SIAM J. Numer. Anal..

[8]  Michael Dumbser,et al.  Efficient implementation of ADER schemes for Euler and magnetohydrodynamical flows on structured meshes - Speed comparisons with Runge-Kutta methods , 2013, J. Comput. Phys..

[9]  John A. Ekaterinaris,et al.  High order discontinuous Galerkin discretizations with a new limiting approach and positivity preservation for strong moving shocks , 2013 .

[10]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[11]  S. Osher,et al.  Uniformly high order accurate essentially non-oscillatory schemes, 111 , 1987 .

[12]  I. S. Men'shov Increasing the order of approximation of Godunov's scheme using solutions of the generalized riemann problem , 1990 .

[13]  Chi-Wang Shu,et al.  High order conservative Lagrangian schemes with Lax-Wendroff type time discretization for the compressible Euler equations , 2009, J. Comput. Phys..

[14]  Chi-Wang Shu,et al.  TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems , 1989 .

[15]  R. LeVeque Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .

[16]  P. Roe,et al.  On Godunov-type methods near low densities , 1991 .

[17]  J. Boris,et al.  Flux-corrected transport. III. Minimal-error FCT algorithms , 1976 .

[18]  Chi-Wang Shu,et al.  The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case , 1990 .

[19]  Chi-Wang Shu,et al.  Efficient Implementation of Weighted ENO Schemes , 1995 .

[20]  Xiangxiong Zhang,et al.  Maximum-Principle-Satisfying and Positivity-Preserving High Order Discontinuous Galerkin Schemes for Conservation Laws on Triangular Meshes , 2011, Journal of Scientific Computing.

[21]  Yuan Liu,et al.  High order parametrized maximum-principle-preserving and positivity-preserving WENO schemes on unstructured meshes , 2014, 2014 IEEE 41st International Conference on Plasma Sciences (ICOPS) held with 2014 IEEE International Conference on High-Power Particle Beams (BEAMS).

[22]  David C. Seal,et al.  A positivity-preserving high-order semi-Lagrangian discontinuous Galerkin scheme for the Vlasov-Poisson equations , 2010, J. Comput. Phys..

[23]  Eleuterio F. Toro,et al.  Towards Very High Order Godunov Schemes , 2001 .

[24]  Michael Dumbser,et al.  ADER-WENO finite volume schemes with space-time adaptive mesh refinement , 2012, J. Comput. Phys..

[25]  Eleuterio F. Toro,et al.  ADER: Arbitrary High Order Godunov Approach , 2002, J. Sci. Comput..

[26]  Xiangxiong Zhang,et al.  Maximum-principle-satisfying and positivity-preserving high-order schemes for conservation laws: survey and new developments , 2011, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[27]  Andrew J. Christlieb,et al.  High-Order Multiderivative Time Integrators for Hyperbolic Conservation Laws , 2013, J. Sci. Comput..

[28]  S. Zalesak Introduction to “Flux-Corrected Transport. I. SHASTA, A Fluid Transport Algorithm That Works” , 1997 .

[29]  R. Courant,et al.  On the solution of nonlinear hyperbolic differential equations by finite differences , 1952 .

[30]  Zhengfu Xu,et al.  A parametrized maximum principle preserving flux limiter for finite difference RK-WENO schemes with applications in incompressible flows , 2013, J. Comput. Phys..

[31]  L Howarth Similarity and Dimensional Methods in Mechanics , 1960 .

[32]  Zhengfu Xu,et al.  Positivity-Preserving Finite Difference Weighted ENO Schemes with Constrained Transport for Ideal Magnetohydrodynamic Equations , 2015, SIAM J. Sci. Comput..

[33]  Gérard Gallice,et al.  Positive and Entropy Stable Godunov-type Schemes for Gas Dynamics and MHD Equations in Lagrangian or Eulerian Coordinates , 2003, Numerische Mathematik.

[34]  Chi-Wang Shu,et al.  Finite Difference WENO Schemes with Lax-Wendroff-Type Time Discretizations , 2002, SIAM J. Sci. Comput..

[35]  Phillip Colella,et al.  Higher order Godunov methods for general systems of hyperbolic conservation laws , 1989 .

[36]  A. Harten,et al.  The artificial compression method for computation of shocks and contact discontinuities: III. Self , 1978 .

[37]  P. Lax,et al.  Systems of conservation laws , 1960 .

[38]  A. Belin,et al.  HIGH-ORDER POSITIVITY-PRESERVING KINETIC SCHEMES FOR THE COMPRESSIBLE EULER EQUATIONS* , 1996 .

[39]  Zhengfu Xu,et al.  Positivity-Preserving Finite Difference Weighted ENO Schemes with Constrained Transport for Ideal Magnetohydrodynamic Equations , 2014, SIAM J. Sci. Comput..

[40]  Yan Jiang,et al.  An Alternative Formulation of Finite Difference Weighted ENO Schemes with Lax-Wendroff Time Discretization for Conservation Laws , 2013, SIAM J. Sci. Comput..

[41]  David L. Book,et al.  Flux-corrected transport II: Generalizations of the method , 1975 .

[42]  Michael Dumbser,et al.  Building Blocks for Arbitrary High Order Discontinuous Galerkin Schemes , 2006, J. Sci. Comput..

[43]  Nikolaus A. Adams,et al.  Positivity-preserving method for high-order conservative schemes solving compressible Euler equations , 2013, J. Comput. Phys..

[44]  Philippe Villedieu,et al.  A new second order positivity preserving kinetic schemes for the compressible Euler equations , 1995 .

[45]  P. Lax Weak solutions of nonlinear hyperbolic equations and their numerical computation , 1954 .

[46]  A. Rodionov,et al.  Methods of increasing the accuracy in Godunov's scheme , 1989 .

[47]  E. Toro,et al.  Solution of the generalized Riemann problem for advection–reaction equations , 2002, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[48]  Kun Xu,et al.  Gas-kinetic schemes for the compressible Euler equations : Positivity-preserving analysis , 1999 .

[49]  Zhengfu Xu Parametrized maximum principle preserving flux limiters for high order schemes solving hyperbolic conservation laws: one-dimensional scalar problem , 2014, Math. Comput..

[50]  Zhengfu Xu,et al.  Parametrized Positivity Preserving Flux Limiters for the High Order Finite Difference WENO Scheme Solving Compressible Euler Equations , 2014, J. Sci. Comput..

[51]  S. Osher,et al.  Weighted essentially non-oscillatory schemes , 1994 .

[52]  G. Sod A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws , 1978 .

[53]  Andrew J. Christlieb,et al.  Arbitrarily high order Convected Scheme solution of the Vlasov-Poisson system , 2013, J. Comput. Phys..

[54]  J. Boris,et al.  Flux-Corrected Transport , 1997 .

[55]  Michael Dumbser,et al.  Efficient, high accuracy ADER-WENO schemes for hydrodynamics and divergence-free magnetohydrodynamics , 2008, Journal of Computational Physics.

[56]  A. Harten,et al.  Self-adjusting hybrid schemes for shock computations , 1972 .

[57]  Michael Dumbser,et al.  Explicit one-step time discretizations for discontinuous Galerkin and finite volume schemes based on local predictors , 2011, J. Comput. Phys..

[58]  Xiangxiong Zhang,et al.  Positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations with source terms , 2011, J. Comput. Phys..

[59]  Bruno Dubroca,et al.  Solveur de Roe positivement conservatif , 1999 .

[60]  R. D. Richtmyer,et al.  A Method for the Numerical Calculation of Hydrodynamic Shocks , 1950 .

[61]  Michael Dumbser,et al.  The discontinuous Galerkin method with Lax-Wendroff type time discretizations , 2005 .

[62]  Chi-Wang Shu,et al.  On positivity preserving finite volume schemes for Euler equations , 1996 .

[63]  Chi-Wang Shu,et al.  Positivity preserving semi-Lagrangian discontinuous Galerkin formulation: Theoretical analysis and application to the Vlasov-Poisson system , 2011, J. Comput. Phys..