Biorthogonal basis functions in hp-adaptive FEM for elliptic obstacle problems

Abstract In this paper, the discretization of a non-symmetric elliptic obstacle problem with h p -adaptive H 1 ( Ω ) -conforming finite elements is discussed. For this purpose, a higher-order mixed finite element discretization is introduced where the dual space is discretized via biorthogonal basis functions. The h p -adaptivity is realized via automatic adaptive mesh refinement based on a residual a posteriori error estimation which is also derived in this paper. The use of biorthogonal basis functions leads to unilateral box constraints and componentwise complementarity conditions enabling the highly efficient application of a quadratically converging semi-smooth Newton scheme, which can be modified to ensure global convergence. h p -adaptivity usually implies meshes with hanging nodes and varying polynomial degrees which have to be handled appropriately within the H 1 ( Ω ) -conforming finite element discretization. This is typically done by using so-called connectivity matrices. In this paper, a procedure is proposed which efficiently computes these matrices for biorthogonal basis functions. Finally, the applicability of the theoretical findings is demonstrated with several numerical experiments.

[1]  D. Braess Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics , 1995 .

[2]  Dietrich Braess,et al.  A posteriori error estimators for obstacle problems – another look , 2005, Numerische Mathematik.

[3]  Yvon Maday,et al.  Polynomial interpolation results in Sobolev spaces , 1992 .

[4]  E. Süli,et al.  A note on the design of hp-adaptive finite element methods for elliptic partial differential equations , 2005 .

[5]  Lothar Banz,et al.  hp-adaptive IPDG/TDG-FEM for parabolic obstacle problems , 2014, Comput. Math. Appl..

[6]  Xiaojun Chen,et al.  Global and superlinear convergence of the smoothing Newton method and its application to general box constrained variational inequalities , 1998, Math. Comput..

[7]  Xiaojun Chen,et al.  A penalized Fischer-Burmeister NCP-function , 2000, Math. Program..

[8]  Barbara I. Wohlmuth,et al.  Biorthogonal bases with local support and approximation properties , 2007, Math. Comput..

[9]  D. Han A new class of projection and contraction methods for solving variational inequality problems , 2006, Comput. Math. Appl..

[10]  Andreas Schröder,et al.  A posteriori error estimates of higher-order finite elements for frictional contact problems , 2012 .

[11]  Jens Markus Melenk,et al.  hp-Interpolation of Nonsmooth Functions and an Application to hp-A posteriori Error Estimation , 2005, SIAM J. Numer. Anal..

[12]  Lothar Banz,et al.  On hp-adaptive BEM for frictional contact problems in linear elasticity , 2015, Comput. Math. Appl..

[13]  Patrick Hild,et al.  Quadratic finite element methods for unilateral contact problems , 2002 .

[14]  Olaf Steinbach,et al.  Numerical Approximation Methods for Elliptic Boundary Value Problems: Finite and Boundary Elements , 2007 .

[15]  Carsten Carstensen,et al.  Averaging techniques yield reliable a posteriori finite element error control for obstacle problems , 2004, Numerische Mathematik.

[16]  Ricardo H. Nochetto,et al.  A posteriori error analysis for parabolic variational inequalities , 2007 .

[17]  Deren Han Solving linear variational inequality problems by a self-adaptive projection method , 2006, Appl. Math. Comput..

[18]  Barbara I. Wohlmuth,et al.  A Mortar Finite Element Method Using Dual Spaces for the Lagrange Multiplier , 2000, SIAM J. Numer. Anal..

[19]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.

[20]  Lothar Banz,et al.  A posteriori error estimates of hp-adaptive IPDG-FEM for elliptic obstacle problems , 2014 .

[21]  Barbara I. Wohlmuth,et al.  On residual-based a posteriori error estimation in hp-FEM , 2001, Adv. Comput. Math..

[22]  Lothar Banz hp-finite element and boundary element methods for elliptic, elliptic stochastic, parabolic and hyperbolic obstacle and contact problems , 2012 .

[23]  Christian Lage,et al.  Concepts: An object-oriented software package for partial differential equations , 2002 .

[24]  Andreas Krebs,et al.  A p-version finite element method for nonlinear elliptic variational inequalities in 2D , 2006, Numerische Mathematik.

[25]  Andreas Schröder,et al.  Constrained approximation in hp-FEM: Unsymmetric subdivisions and multi-level hanging nodes , 2011 .

[26]  Andreas Schröder,et al.  Constraints Coefficients in hp-FEM , 2008 .

[27]  Joachim Gwinner,et al.  hphp-FEM convergence for unilateral contact problems with Tresca friction in plane linear elastostatics , 2013, J. Comput. Appl. Math..

[28]  M. Ainsworth,et al.  Aspects of an adaptive hp-finite element method : Adaptive strategy, conforming approximation and efficient solvers , 1997 .

[29]  Barbara I. Wohlmuth,et al.  A Primal-Dual Active Set Algorithm for Three-Dimensional Contact Problems with Coulomb Friction , 2008, SIAM J. Sci. Comput..

[30]  Andreas Schröder Mixed Finite Element Methods of Higher-Order for Model Contact Problems , 2011, SIAM J. Numer. Anal..

[31]  Franz Rendl,et al.  An Infeasible Active Set Method for Quadratic Problems with Simple Bounds , 2003, SIAM J. Optim..

[32]  Ivo Dolezel,et al.  Arbitrary-level hanging nodes and automatic adaptivity in the hp-FEM , 2008, Math. Comput. Simul..

[33]  Kazufumi Ito,et al.  The Primal-Dual Active Set Strategy as a Semismooth Newton Method , 2002, SIAM J. Optim..