Biorthogonal basis functions in hp-adaptive FEM for elliptic obstacle problems
暂无分享,去创建一个
[1] D. Braess. Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics , 1995 .
[2] Dietrich Braess,et al. A posteriori error estimators for obstacle problems – another look , 2005, Numerische Mathematik.
[3] Yvon Maday,et al. Polynomial interpolation results in Sobolev spaces , 1992 .
[4] E. Süli,et al. A note on the design of hp-adaptive finite element methods for elliptic partial differential equations , 2005 .
[5] Lothar Banz,et al. hp-adaptive IPDG/TDG-FEM for parabolic obstacle problems , 2014, Comput. Math. Appl..
[6] Xiaojun Chen,et al. Global and superlinear convergence of the smoothing Newton method and its application to general box constrained variational inequalities , 1998, Math. Comput..
[7] Xiaojun Chen,et al. A penalized Fischer-Burmeister NCP-function , 2000, Math. Program..
[8] Barbara I. Wohlmuth,et al. Biorthogonal bases with local support and approximation properties , 2007, Math. Comput..
[9] D. Han. A new class of projection and contraction methods for solving variational inequality problems , 2006, Comput. Math. Appl..
[10] Andreas Schröder,et al. A posteriori error estimates of higher-order finite elements for frictional contact problems , 2012 .
[11] Jens Markus Melenk,et al. hp-Interpolation of Nonsmooth Functions and an Application to hp-A posteriori Error Estimation , 2005, SIAM J. Numer. Anal..
[12] Lothar Banz,et al. On hp-adaptive BEM for frictional contact problems in linear elasticity , 2015, Comput. Math. Appl..
[13] Patrick Hild,et al. Quadratic finite element methods for unilateral contact problems , 2002 .
[14] Olaf Steinbach,et al. Numerical Approximation Methods for Elliptic Boundary Value Problems: Finite and Boundary Elements , 2007 .
[15] Carsten Carstensen,et al. Averaging techniques yield reliable a posteriori finite element error control for obstacle problems , 2004, Numerische Mathematik.
[16] Ricardo H. Nochetto,et al. A posteriori error analysis for parabolic variational inequalities , 2007 .
[17] Deren Han. Solving linear variational inequality problems by a self-adaptive projection method , 2006, Appl. Math. Comput..
[18] Barbara I. Wohlmuth,et al. A Mortar Finite Element Method Using Dual Spaces for the Lagrange Multiplier , 2000, SIAM J. Numer. Anal..
[19] F. Black,et al. The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.
[20] Lothar Banz,et al. A posteriori error estimates of hp-adaptive IPDG-FEM for elliptic obstacle problems , 2014 .
[21] Barbara I. Wohlmuth,et al. On residual-based a posteriori error estimation in hp-FEM , 2001, Adv. Comput. Math..
[22] Lothar Banz. hp-finite element and boundary element methods for elliptic, elliptic stochastic, parabolic and hyperbolic obstacle and contact problems , 2012 .
[23] Christian Lage,et al. Concepts: An object-oriented software package for partial differential equations , 2002 .
[24] Andreas Krebs,et al. A p-version finite element method for nonlinear elliptic variational inequalities in 2D , 2006, Numerische Mathematik.
[25] Andreas Schröder,et al. Constrained approximation in hp-FEM: Unsymmetric subdivisions and multi-level hanging nodes , 2011 .
[26] Andreas Schröder,et al. Constraints Coefficients in hp-FEM , 2008 .
[27] Joachim Gwinner,et al. hphp-FEM convergence for unilateral contact problems with Tresca friction in plane linear elastostatics , 2013, J. Comput. Appl. Math..
[28] M. Ainsworth,et al. Aspects of an adaptive hp-finite element method : Adaptive strategy, conforming approximation and efficient solvers , 1997 .
[29] Barbara I. Wohlmuth,et al. A Primal-Dual Active Set Algorithm for Three-Dimensional Contact Problems with Coulomb Friction , 2008, SIAM J. Sci. Comput..
[30] Andreas Schröder. Mixed Finite Element Methods of Higher-Order for Model Contact Problems , 2011, SIAM J. Numer. Anal..
[31] Franz Rendl,et al. An Infeasible Active Set Method for Quadratic Problems with Simple Bounds , 2003, SIAM J. Optim..
[32] Ivo Dolezel,et al. Arbitrary-level hanging nodes and automatic adaptivity in the hp-FEM , 2008, Math. Comput. Simul..
[33] Kazufumi Ito,et al. The Primal-Dual Active Set Strategy as a Semismooth Newton Method , 2002, SIAM J. Optim..