Computational Homogenization for Laminated Ferromagnetic Cores in Magnetodynamics
暂无分享,去创建一个
[1] Patrice Labie,et al. Homogenization for Periodical Electromagnetic Structure: Which Formulation? , 2010, IEEE Transactions on Magnetics.
[2] Raúl A. Feijóo,et al. On micro‐to‐macro transitions for multi‐scale analysis of non‐linear heterogeneous materials: unified variational basis and finite element implementation , 2011 .
[3] S. Clénet,et al. Comparison of Preisach and Jiles–Atherton models to take into account hysteresis phenomenon for finite element analysis , 2003 .
[4] Augusto Visintin. Homogenization of doubly-nonlinear equations , 2006 .
[5] Augusto Visintin,et al. Electromagnetic Processes in Doubly-Nonlinear Composites , 2008 .
[6] A. Bensoussan,et al. Asymptotic analysis for periodic structures , 1979 .
[7] J. Gyselinck,et al. A nonlinear time-domain homogenization technique for laminated iron cores in three-dimensional finite-element models , 2006, IEEE Transactions on Magnetics.
[8] C. Miehe,et al. Numerical computation of algorithmic (consistent) tangent moduli in large-strain computational inelasticity , 1996 .
[9] Adel Razek,et al. Homogenization technique for Maxwell equations in periodic structures , 1997 .
[10] Thomas Rylander,et al. Computational Electromagnetics , 2005, Electronics, Power Electronics, Optoelectronics, Microwaves, Electromagnetics, and Radar.
[11] C. Geuzaine,et al. Finite Element Computational Homogenization of Nonlinear Multiscale Materials in Magnetostatics , 2012, IEEE Transactions on Magnetics.
[12] E Weinan,et al. Heterogeneous multiscale methods: A review , 2007 .
[13] A. Bossavit. Computational Electromagnetism: Variational Formulations, Complementarity, Edge Elements , 1997 .
[14] G. Allaire. Homogenization and two-scale convergence , 1992 .
[15] O. Bottauscio,et al. Nonlinear Homogenization Technique for Saturable Soft Magnetic Composites , 2008, IEEE Transactions on Magnetics.
[16] Christophe Geuzaine,et al. An energy-based variational model of ferromagnetic hysteresis for finite element computations , 2013, J. Comput. Appl. Math..