Computational Homogenization for Laminated Ferromagnetic Cores in Magnetodynamics

In this paper, we investigate the modeling of ferromagnetic multiscale materials. We propose a computational homogenization technique based on the heterogeneous multiscale method (HMM) that includes both eddy-current and hysteretic losses at the mesoscale. The HMM comprises: 1) a macroscale problem that captures the slow variations of the overall solution; 2) many mesoscale problems that allow to determine the constitutive law at the macroscale. As application example, a laminated iron core is considered.

[1]  Patrice Labie,et al.  Homogenization for Periodical Electromagnetic Structure: Which Formulation? , 2010, IEEE Transactions on Magnetics.

[2]  Raúl A. Feijóo,et al.  On micro‐to‐macro transitions for multi‐scale analysis of non‐linear heterogeneous materials: unified variational basis and finite element implementation , 2011 .

[3]  S. Clénet,et al.  Comparison of Preisach and Jiles–Atherton models to take into account hysteresis phenomenon for finite element analysis , 2003 .

[4]  Augusto Visintin Homogenization of doubly-nonlinear equations , 2006 .

[5]  Augusto Visintin,et al.  Electromagnetic Processes in Doubly-Nonlinear Composites , 2008 .

[6]  A. Bensoussan,et al.  Asymptotic analysis for periodic structures , 1979 .

[7]  J. Gyselinck,et al.  A nonlinear time-domain homogenization technique for laminated iron cores in three-dimensional finite-element models , 2006, IEEE Transactions on Magnetics.

[8]  C. Miehe,et al.  Numerical computation of algorithmic (consistent) tangent moduli in large-strain computational inelasticity , 1996 .

[9]  Adel Razek,et al.  Homogenization technique for Maxwell equations in periodic structures , 1997 .

[10]  Thomas Rylander,et al.  Computational Electromagnetics , 2005, Electronics, Power Electronics, Optoelectronics, Microwaves, Electromagnetics, and Radar.

[11]  C. Geuzaine,et al.  Finite Element Computational Homogenization of Nonlinear Multiscale Materials in Magnetostatics , 2012, IEEE Transactions on Magnetics.

[12]  E Weinan,et al.  Heterogeneous multiscale methods: A review , 2007 .

[13]  A. Bossavit Computational Electromagnetism: Variational Formulations, Complementarity, Edge Elements , 1997 .

[14]  G. Allaire Homogenization and two-scale convergence , 1992 .

[15]  O. Bottauscio,et al.  Nonlinear Homogenization Technique for Saturable Soft Magnetic Composites , 2008, IEEE Transactions on Magnetics.

[16]  Christophe Geuzaine,et al.  An energy-based variational model of ferromagnetic hysteresis for finite element computations , 2013, J. Comput. Appl. Math..