Limits on the detectability of the CMB B-mode polarization imposed by foregrounds

We investigate which practical constraints are imposed by foregrounds on the detection of the B-mode polarization generated by gravitational waves, in the case of experiments of the type currently being planned. As the B-mode signal is probably dominated by foregrounds at all frequencies, the detection of the cosmological component depends drastically on our ability to remove foregrounds. We provide an analytical expression with which to estimate the level of the residual polarization for Galactic foregrounds, according to the method employed for their subtraction. We interpret this result in terms of the lower limit of the tensor-to-scalar ratio r that allows us to disentangle the cosmological B-mode polarization from the foreground contribution. Polarized emission from extragalactic radio sources and gravitational lensing is also taken into account. As a first approach, we consider the ideal limit of an instrumental noise-free experiment: for full-sky coverage and a resolution of 1°, we obtain a limit of r ∼ 10 -4 . This value can be improved by high-resolution experiments and, in principle, there is no clear fundamental limit on the detectability of the polarization of gravitational waves. Our analysis is also applied to planned or hypothetical future polarization experiments, taking into account expected noise levels.

[1]  Edward J. Wollack,et al.  First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Determination of cosmological parameters , 2003, astro-ph/0302209.

[2]  J. Bond,et al.  Polarization Observations with the Cosmic Background Imager , 2001, Science.

[3]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[4]  A. N. Lasenby,et al.  All-sky component separation in the presence of anisotropic noise and dust temperature variations , 2004 .

[5]  G. Zotti,et al.  All-sky astrophysical component separation with Fast Independent Component Analysis (FastICA) , 2001, astro-ph/0108362.

[6]  Jones,et al.  Cross-Correlation of Tenerife Data with Galactic Templates—Evidence for Spinning Dust? , 1999, The Astrophysical journal.

[7]  Polarization of the cosmic microwave background from nonuniform reionization. , 2001, astro-ph/0101368.

[8]  The angular power spectra of polarized Galactic synchrotron , 2000, astro-ph/0006387.

[9]  Wayne Hu,et al.  Mass Reconstruction with CMB Polarization , 2001 .

[10]  A. Lewis Harmonic E / B decomposition for CMB polarization maps , 2003, astro-ph/0305545.

[11]  Angelica de Oliveira-Costa The Cosmic Microwave Background and Its Polarization , 2004 .

[12]  U. Seljak,et al.  An all sky analysis of polarization in the microwave background , 1996, astro-ph/9609170.

[13]  M. Zaldarriaga,et al.  Benchmark parameters for CMB polarization experiments , 2002, astro-ph/0210096.

[14]  S. Masi,et al.  First detection of polarization of the submillimetre diffuse galactic dust emission by Archeops , 2003, astro-ph/0306222.

[15]  J. M. Kovac,et al.  DASI Three-Year Cosmic Microwave Background Polarization Results , 2004 .

[16]  D. Herranz,et al.  Optimal Detection of Sources on a Homogeneous and Isotropic Background , 2001, astro-ph/0107384.

[17]  Wayne Hu Reionization Revisited: Secondary Cosmic Microwave Background Anisotropies and Polarization , 1999, astro-ph/9907103.

[18]  D. Barkats,et al.  First Measurements of the Polarization of the Cosmic Microwave Background Radiation at Small Angular Scales from CAPMAP , 2005 .

[19]  J. Carlstrom,et al.  Detection of polarization in the cosmic microwave background using DASI , 2002, Nature.

[20]  John E. Carlstrom,et al.  Degree Angular Scale Interferometer 3 Year Cosmic Microwave Background Polarization Results , 2005 .

[21]  The power-law behaviours of angular spectra of polarized Galactic synchrotron , 2002, astro-ph/0202389.

[22]  Wayne Hu,et al.  Mass Reconstruction with Cosmic Microwave Background Polarization , 2002 .

[23]  A. R. Duncan,et al.  Polarized radio emission over the southern Galactic plane at 2.4 GHz , 1997 .

[24]  S. Dodelson,et al.  Cosmic microwave background measurements can discriminate among inflation models , 1997, astro-ph/9702166.

[25]  Magnetic Dipole Microwave Emission from Dust Grains , 1998, astro-ph/9807009.

[26]  T. Jenness,et al.  Magnetic field surrounding the starburst nucleus of the galaxy M82 from polarized dust emission , 2000, Nature.

[27]  Matias Zaldarriaga,et al.  Gravitational lensing effect on cosmic microwave background polarization , 1998, astro-ph/9803150.

[28]  J. Cardoso,et al.  Multidetector multicomponent spectral matching and applications for cosmic microwave background data analysis , 2002, astro-ph/0211504.

[29]  David J. Schlegel,et al.  Extrapolation of Galactic Dust Emission at 100 Microns to Cosmic Microwave Background Radiation Frequencies Using FIRAS , 1999, astro-ph/9905128.

[30]  Jessie L. Dotson,et al.  The Far-Infrared Polarization Spectrum: First Results and Analysis , 1999 .

[31]  P. Reich,et al.  A 1.4 GHZ RADIO CONTINUUM AND POLARIZATION SURVEY AT MEDIUM GALACTIC LATITUDES : II. FIRST SECTION , 1999, astro-ph/9905023.

[32]  J. Delabrouille Expériences de polarisation , 2003 .

[33]  White,et al.  Dependence of inflationary reconstruction upon cosmological parameters. , 1996, Physical review. D, Particles and fields.

[34]  L. Knox,et al.  Detectability of tensor perturbations through anisotropy of the cosmic background radiation. , 1994, Physical review letters.

[35]  Matias Zaldarriaga,et al.  E/B decomposition of finite pixelized CMB maps , 2003 .

[36]  E. L. Wright,et al.  Band Power Spectra in the COBE DMR Four-Year Anisotropy Maps , 1996, astro-ph/9601058.

[37]  Max Tegmark,et al.  A method for subtracting foregrounds from multifrequency CMB sky maps , 1996 .

[38]  L. Toffolatti,et al.  Point source detection using the Spherical Mexican Hat Wavelet on simulated all-sky Planck maps , 2002, astro-ph/0212578.

[39]  George D. Nicolson,et al.  The Rhodes/HartRAO 2326‐MHz radio continuum survey , 1998 .

[40]  B. Wilson Magnetic Fields in Star-forming Molecular Clouds. V. Submillimeter Polarization of the Barnard 1 Dark Cloud , 2002, astro-ph/0205328.

[41]  Asantha Cooray,et al.  Lensing reconstruction with CMB temperature and polarization , 2003 .

[42]  G. Giardino,et al.  Towards a model of full-sky Galactic synchrotron intensity and linear polarisation: A re-analysis of the Parkes data , 2002, astro-ph/0202520.

[43]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[44]  J. Jonas,et al.  A polarized synchrotron template for cosmic microwave background polarization experiments based on WMAP data , 2004 .

[45]  P. Steinhardt,et al.  The Ekpyrotic universe: Colliding branes and the origin of the hot big bang , 2001, hep-th/0103239.

[46]  A. Lazarian,et al.  Electric Dipole Radiation from Spinning Dust Grains , 1998, astro-ph/9802239.

[47]  L. Toffolatti,et al.  Extragalactic source counts and contributions to the anisotropies of the cosmic microwave background: predictions for the Planck Surveyor mission , 1998 .

[48]  E. Bunn Detectability of microwave background polarization , 2001, astro-ph/0108209.

[49]  Richard Gispert,et al.  Foregrounds and CMB experiments: I. Semi-analytical estimates of contamination , 1999 .

[50]  Max Tegmark,et al.  Removing Point Sources from Cosmic Microwave Background Maps , 1998 .

[51]  Anthony Challinor,et al.  Analysis of CMB polarization on an incomplete sky , 2001 .

[52]  Yong-Seon Song,et al.  Limit on the detectability of the energy scale of inflation. , 2002, Physical review letters.

[53]  M. Bersanelli,et al.  Full sky study of diffuse Galactic emission at decimeter wavelenghts , 2003, astro-ph/0303031.

[54]  Edward J. Wollack,et al.  First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Foreground Emission , 2003, astro-ph/0302208.

[55]  Cosmic microwave background polarization signals from tangled magnetic fields. , 2000, Physical review letters.

[56]  P. A. R. Ade,et al.  Scientific optimization of a ground-based CMB polarization experiment , 2003, astro-ph/0309610.

[57]  Asantha Cooray,et al.  Separation of gravitational-wave and cosmic-shear contributions to cosmic microwave background polarization. , 2002, Physical review letters.

[58]  L. Knox,et al.  Small-Scale Cosmic Microwave Background Temperature and Polarization Anisotropies Due to Patchy Reionization , 2003 .

[59]  Albert Stebbins,et al.  Statistics of cosmic microwave background polarization , 1997 .

[60]  T. R. Seshadri,et al.  Small-scale cosmic microwave background polarization anisotropies due to tangled primordial magnetic fields , 2003, astro-ph/0303014.

[61]  L. Toffolatti,et al.  Predictions on the high-frequency polarization properties of extragalactic radio sources and implications for polarization measurements of the cosmic microwave background , 2003 .

[62]  A. Lasenby,et al.  Foreground separation methods for satellite observations of the cosmic microwave background , 1998, astro-ph/9806387.

[63]  E. Dwek Unveiling the cosmic infrared background , 1996 .

[64]  Jérôme Martin,et al.  Cosmological parameter estimation and the inflationary cosmology , 2002, astro-ph/0202094.