An Alternating Direction Algorithm for Total Variation Reconstruction of Distributed Parameters
暂无分享,去创建一个
José M. Bioucas-Dias | Raul Carneiro Martins | A. Cruz Serra | Nuno B. Bras | R. C. Martins | J. Bioucas-Dias | A. Serra | N. Bras
[1] D K Smith,et al. Numerical Optimization , 2001, J. Oper. Res. Soc..
[2] Curtis R. Vogel,et al. Iterative Methods for Total Variation Denoising , 1996, SIAM J. Sci. Comput..
[3] Wolfgang Bangerth,et al. Adaptive Finite Element Methods for the Identification of Distributed Parameters in Partial Differential Equations , 2002 .
[4] Tom Goldstein,et al. The Split Bregman Method for L1-Regularized Problems , 2009, SIAM J. Imaging Sci..
[5] L. Rudin,et al. Nonlinear total variation based noise removal algorithms , 1992 .
[6] Zhiming Chen,et al. An Augmented Lagrangian Method for Identifying Discontinuous Parameters in Elliptic Systems , 1999 .
[7] Stefan Heldmann,et al. An octree multigrid method for quasi-static Maxwell's equations with highly discontinuous coefficients , 2007, J. Comput. Phys..
[8] Simon Setzer,et al. Split Bregman Algorithm, Douglas-Rachford Splitting and Frame Shrinkage , 2009, SSVM.
[9] José M. Bioucas-Dias,et al. Fast Image Recovery Using Variable Splitting and Constrained Optimization , 2009, IEEE Transactions on Image Processing.
[10] Stephen P. Boyd,et al. Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..
[11] José M. Bioucas-Dias,et al. An Augmented Lagrangian Approach to the Constrained Optimization Formulation of Imaging Inverse Problems , 2009, IEEE Transactions on Image Processing.
[12] Curtis R. Vogel. Sparse Matrix Computations Arising in Distributed Parameter Identification , 1999, SIAM J. Matrix Anal. Appl..
[13] José M. Bioucas-Dias,et al. A New TwIST: Two-Step Iterative Shrinkage/Thresholding Algorithms for Image Restoration , 2007, IEEE Transactions on Image Processing.
[14] Marc Teboulle,et al. A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..
[15] Xiao-Chuan Cai,et al. Parallel overlapping domain decomposition methods for coupled inverse elliptic problems , 2009 .
[16] Michael Elad,et al. Analysis versus synthesis in signal priors , 2006, 2006 14th European Signal Processing Conference.
[17] Junfeng Yang,et al. A Fast Alternating Direction Method for TVL1-L2 Signal Reconstruction From Partial Fourier Data , 2010, IEEE Journal of Selected Topics in Signal Processing.
[18] K. Kunisch,et al. The augmented lagrangian method for parameter estimation in elliptic systems , 1990 .
[19] M. Nikolova. An Algorithm for Total Variation Minimization and Applications , 2004 .
[20] Junfeng Yang,et al. A New Alternating Minimization Algorithm for Total Variation Image Reconstruction , 2008, SIAM J. Imaging Sci..
[21] José M. Bioucas-Dias,et al. Multiplicative Noise Removal Using Variable Splitting and Constrained Optimization , 2009, IEEE Transactions on Image Processing.
[22] Xuecheng Tai,et al. Sequential and Parallel Splitting Methods for Bilinear Control Problems in Hilbert Spaces , 1997 .
[23] C. Vogel. Computational Methods for Inverse Problems , 1987 .
[24] J. T. Han. A computational method to solve nonlinear elliptic equations for natural convection in enclosures , 1979 .
[25] W. Yeh. Review of Parameter Identification Procedures in Groundwater Hydrology: The Inverse Problem , 1986 .
[26] Antonin Chambolle,et al. A l1-Unified Variational Framework for Image Restoration , 2004, ECCV.
[27] M. Fornasier,et al. Electric current density imaging via an accelerated iterative algorithm with joint sparsity constraints , 2009 .
[28] Dimitri P. Bertsekas,et al. Nonlinear Programming , 1997 .
[29] William Rodi,et al. Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversion , 2001 .
[30] Xue-Cheng Tai,et al. Identification of Discontinuous Coefficients in Elliptic Problems Using Total Variation Regularization , 2003, SIAM J. Sci. Comput..
[31] G. Kuruvila,et al. Airfoil Optimization by the One-Shot Method , 1994 .
[32] Ernie Esser,et al. Applications of Lagrangian-Based Alternating Direction Methods and Connections to Split Bregman , 2009 .
[33] Jun Zou,et al. An Efficient Linear Solver for Nonlinear Parameter Identification Problems , 2000, SIAM J. Sci. Comput..
[34] T. Chan,et al. Augmented Lagrangian and total variation methods for recovering discontinuous coefficients from elliptic equations , 1997 .
[35] Patrick L. Combettes,et al. Proximal Splitting Methods in Signal Processing , 2009, Fixed-Point Algorithms for Inverse Problems in Science and Engineering.
[36] Xue-Cheng Tai,et al. Augmented Lagrangian Method, Dual Methods and Split Bregman Iteration for ROF Model , 2009, SSVM.
[37] E. Haber,et al. A multigrid method for distributed parameter estimation problems. , 2003 .
[38] Manuchehr Soleimani,et al. Absolute Conductivity Reconstruction in Magnetic Induction Tomography Using a Nonlinear Method , 2006, IEEE Transactions on Medical Imaging.
[39] B. Mercier,et al. A dual algorithm for the solution of nonlinear variational problems via finite element approximation , 1976 .
[40] David Isaacson,et al. Electrical Impedance Tomography , 1999, SIAM Rev..
[41] E. Haber,et al. Preconditioned all-at-once methods for large, sparse parameter estimation problems , 2001 .
[42] R. Glowinski,et al. Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problèmes de Dirichlet non linéaires , 1975 .
[43] Dimitri P. Bertsekas,et al. On the Douglas—Rachford splitting method and the proximal point algorithm for maximal monotone operators , 1992, Math. Program..
[44] M. Heinkenschloss,et al. Airfoil Design by an All-at-once Method* , 1998 .