An Alternating Direction Algorithm for Total Variation Reconstruction of Distributed Parameters

Augmented Lagrangian variational formulations and alternating optimization have been adopted to solve distributed parameter estimation problems. The alternating direction method of multipliers (ADMM) is one of such formulations/optimization methods. Very recently, the number of applications of the ADMM, or variants of it, to solve inverse problems in image and signal processing has increased at an exponential rate. The reason for this interest is that ADMM decomposes a difficult optimization problem into a sequence of much simpler problems. In this paper, we use the ADMM to reconstruct piecewise-smooth distributed parameters of elliptical partial differential equations from noisy and linear (blurred) observations of the underlying field. The distributed parameters are estimated by solving an inverse problem with total variation (TV) regularization. The proposed instance of the ADMM solves, in each iteration, an and a decoupled optimization problems. An operator splitting is used to simplify the treatment of the TV regularizer, avoiding its smooth approximation and yielding a simple yet effective ADMM reconstruction method compared with previously proposed approaches. The competitiveness of the proposed method, with respect to the state-of-the-art, is illustrated in simulated 1-D and 2-D elliptical equation problems, which are representative of many real applications.

[1]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[2]  Curtis R. Vogel,et al.  Iterative Methods for Total Variation Denoising , 1996, SIAM J. Sci. Comput..

[3]  Wolfgang Bangerth,et al.  Adaptive Finite Element Methods for the Identification of Distributed Parameters in Partial Differential Equations , 2002 .

[4]  Tom Goldstein,et al.  The Split Bregman Method for L1-Regularized Problems , 2009, SIAM J. Imaging Sci..

[5]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[6]  Zhiming Chen,et al.  An Augmented Lagrangian Method for Identifying Discontinuous Parameters in Elliptic Systems , 1999 .

[7]  Stefan Heldmann,et al.  An octree multigrid method for quasi-static Maxwell's equations with highly discontinuous coefficients , 2007, J. Comput. Phys..

[8]  Simon Setzer,et al.  Split Bregman Algorithm, Douglas-Rachford Splitting and Frame Shrinkage , 2009, SSVM.

[9]  José M. Bioucas-Dias,et al.  Fast Image Recovery Using Variable Splitting and Constrained Optimization , 2009, IEEE Transactions on Image Processing.

[10]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[11]  José M. Bioucas-Dias,et al.  An Augmented Lagrangian Approach to the Constrained Optimization Formulation of Imaging Inverse Problems , 2009, IEEE Transactions on Image Processing.

[12]  Curtis R. Vogel Sparse Matrix Computations Arising in Distributed Parameter Identification , 1999, SIAM J. Matrix Anal. Appl..

[13]  José M. Bioucas-Dias,et al.  A New TwIST: Two-Step Iterative Shrinkage/Thresholding Algorithms for Image Restoration , 2007, IEEE Transactions on Image Processing.

[14]  Marc Teboulle,et al.  A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..

[15]  Xiao-Chuan Cai,et al.  Parallel overlapping domain decomposition methods for coupled inverse elliptic problems , 2009 .

[16]  Michael Elad,et al.  Analysis versus synthesis in signal priors , 2006, 2006 14th European Signal Processing Conference.

[17]  Junfeng Yang,et al.  A Fast Alternating Direction Method for TVL1-L2 Signal Reconstruction From Partial Fourier Data , 2010, IEEE Journal of Selected Topics in Signal Processing.

[18]  K. Kunisch,et al.  The augmented lagrangian method for parameter estimation in elliptic systems , 1990 .

[19]  M. Nikolova An Algorithm for Total Variation Minimization and Applications , 2004 .

[20]  Junfeng Yang,et al.  A New Alternating Minimization Algorithm for Total Variation Image Reconstruction , 2008, SIAM J. Imaging Sci..

[21]  José M. Bioucas-Dias,et al.  Multiplicative Noise Removal Using Variable Splitting and Constrained Optimization , 2009, IEEE Transactions on Image Processing.

[22]  Xuecheng Tai,et al.  Sequential and Parallel Splitting Methods for Bilinear Control Problems in Hilbert Spaces , 1997 .

[23]  C. Vogel Computational Methods for Inverse Problems , 1987 .

[24]  J. T. Han A computational method to solve nonlinear elliptic equations for natural convection in enclosures , 1979 .

[25]  W. Yeh Review of Parameter Identification Procedures in Groundwater Hydrology: The Inverse Problem , 1986 .

[26]  Antonin Chambolle,et al.  A l1-Unified Variational Framework for Image Restoration , 2004, ECCV.

[27]  M. Fornasier,et al.  Electric current density imaging via an accelerated iterative algorithm with joint sparsity constraints , 2009 .

[28]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[29]  William Rodi,et al.  Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversion , 2001 .

[30]  Xue-Cheng Tai,et al.  Identification of Discontinuous Coefficients in Elliptic Problems Using Total Variation Regularization , 2003, SIAM J. Sci. Comput..

[31]  G. Kuruvila,et al.  Airfoil Optimization by the One-Shot Method , 1994 .

[32]  Ernie Esser,et al.  Applications of Lagrangian-Based Alternating Direction Methods and Connections to Split Bregman , 2009 .

[33]  Jun Zou,et al.  An Efficient Linear Solver for Nonlinear Parameter Identification Problems , 2000, SIAM J. Sci. Comput..

[34]  T. Chan,et al.  Augmented Lagrangian and total variation methods for recovering discontinuous coefficients from elliptic equations , 1997 .

[35]  Patrick L. Combettes,et al.  Proximal Splitting Methods in Signal Processing , 2009, Fixed-Point Algorithms for Inverse Problems in Science and Engineering.

[36]  Xue-Cheng Tai,et al.  Augmented Lagrangian Method, Dual Methods and Split Bregman Iteration for ROF Model , 2009, SSVM.

[37]  E. Haber,et al.  A multigrid method for distributed parameter estimation problems. , 2003 .

[38]  Manuchehr Soleimani,et al.  Absolute Conductivity Reconstruction in Magnetic Induction Tomography Using a Nonlinear Method , 2006, IEEE Transactions on Medical Imaging.

[39]  B. Mercier,et al.  A dual algorithm for the solution of nonlinear variational problems via finite element approximation , 1976 .

[40]  David Isaacson,et al.  Electrical Impedance Tomography , 1999, SIAM Rev..

[41]  E. Haber,et al.  Preconditioned all-at-once methods for large, sparse parameter estimation problems , 2001 .

[42]  R. Glowinski,et al.  Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problèmes de Dirichlet non linéaires , 1975 .

[43]  Dimitri P. Bertsekas,et al.  On the Douglas—Rachford splitting method and the proximal point algorithm for maximal monotone operators , 1992, Math. Program..

[44]  M. Heinkenschloss,et al.  Airfoil Design by an All-at-once Method* , 1998 .