The vibrational spectrum of the water trimer: Comparison between anharmonic ab initio calculations and neon matrix infrared data between 11,000 and 90 cm−1

Abstract The infrared spectrum of the water dimer trapped in solid neon has been recorded up to the visible by improving significantly the experimental technique used in a previous paper [Y. Bouteiller, J.P. Perchard, Chem. Phys. 305 (2004) 1]. A total of 22 intramolecular transitions of the proton donor (PD) and 23 of the proton acceptor (PA) are now identified and assigned on the basis of 16O/18O isotopic shifts and of realistic anharmonicity corrections. From an ab initio determination of the potential energy a perturbation-resonance treatment has been carried out for each polyad Pn, n = 2–8. Finally combinations of intra + intermolecular transitions were identified and assigned on the basis of calculated anharmonicity coefficients.

[1]  K. Lehmann Beyond the x-K relations , 1989 .

[2]  J. Duncan,et al.  Second-order perturbation theory corrections to effective Fermi resonance coupling constants , 1993 .

[3]  A. Császár,et al.  Vibrational energy levels of water , 1997 .

[4]  T. R. Dyke,et al.  Partially deuterated water dimers: Microwave spectra and structure , 1980 .

[5]  F. Huisken,et al.  Infrared spectroscopy of size-selected water and methanol clusters. , 2000, Chemical reviews.

[6]  J. Perchard Anharmonicity and hydrogen bonding. III. Analysis of the near infrared spectrum of water trapped in argon matrix , 2001 .

[7]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[8]  Gang Li,et al.  The HITRAN 2008 molecular spectroscopic database , 2005 .

[9]  L. Manceron,et al.  Neon matrix induced perturbations of weak hydrogen-bonded complexes. , 2003 .

[10]  John S. Muenter,et al.  THE STRUCTURE OF WATER DIMER FROM MOLECULAR BEAM ELECTRIC RESONANCE SPECTROSCOPY: PARTIALLY DEUTERATED DIMERS , 1977 .

[11]  H. Kjaergaard,et al.  Calculated OH-stretching and HOH-bending vibrational transitions in the water dimer , 2003 .

[12]  O. Ulenikov,et al.  The vibrational analysis of H216O , 1983 .

[13]  J. Flaud,et al.  Spectrum of H218O and H217O in the 6974 to 7387 cm−1 region , 1977 .

[14]  H. Schaefer,et al.  Extensive theoretical studies of the hydrogen‐bonded complexes (H2O)2, (H2O)2H+, (HF)2, (HF)2H+, F2H−, and (NH3)2 , 1986 .

[15]  Axel Kulcke,et al.  Infrared spectroscopy of small size‐selected water clusters , 1996 .

[16]  Mark A. Miller,et al.  The formation of cyclic water complexes by sequential ring insertion: Experiment and theory , 2002 .

[17]  Harry Partridge,et al.  The determination of an accurate isotope dependent potential energy surface for water from extensive ab initio calculations and experimental data , 1997 .

[18]  H. L. Strauss,et al.  Can the Bloch equations describe the vibrational spectra of a reacting molecule , 1985 .

[19]  A. McCoy,et al.  Perturbative approaches to highly excited molecular vibrations of H2O, D2O, and HDO , 1990 .

[20]  S. Suhai Density Functional Studies of the Hydrogen-Bonded Network in an Infinite Water Polymer , 1995 .

[21]  Kwang Soo Kim,et al.  Harmonic vibrational frequencies of the water monomer and dimer: Comparison of various levels of ab initio theory , 1995 .

[22]  J. Perchard Anharmonicity and hydrogen bonding: II – A near infrared study of water trapped in nitrogen matrix , 2001 .

[23]  Koichi M. T. Yamada,et al.  Infrared spectra of water clusters in krypton and xenon matrices. , 2005, The Journal of chemical physics.

[24]  Surjit Singh,et al.  Variation of Dipole Moment Function of O-H Bond of t-Butanol with the Nature of Solvent and Its Temperature , 1985 .

[25]  M. Kaloudis,et al.  Vibrational spectroscopy of small water complexes embedded in large liquid helium clusters , 1996 .

[26]  Y. Shen,et al.  Infrared predissociation spectra of water dimer in a supersonic molecular beam , 1984 .

[27]  K. Pfeilsticker,et al.  Atmospheric Detection of Water Dimers via Near-Infrared Absorption , 2003, Science.

[28]  K. Szalewicz,et al.  Pair potential for water from symmetry-adapted perturbation theory , 1997 .

[29]  A. Engdahl,et al.  On the structure of the water trimer. A matrix isolation study , 1987 .

[30]  Surjit Singh,et al.  Dipole Moment Derivatives of Free and Hydrogen Bonded O-H Bond of Methanol , 1981 .

[31]  S. Xantheas,et al.  Development of transferable interaction models for water. I. Prominent features of the water dimer potential energy surface , 2002 .

[32]  Heather A. Harker,et al.  Water dimer hydrogen bond stretch, donor torsion overtone, and “in-plane bend” vibrations , 2003 .

[33]  T. Paolo,et al.  Model Calculations on the Influence of Mechanical and Electrical Anharmonicity on Infrared Intensities: Relation to Hydrogen Bonding , 1972 .

[34]  G. Groenenboom,et al.  Water pair potential of near spectroscopic accuracy. I. Analysis of potential surface and virial coefficients , 2000 .

[35]  Z. Huang,et al.  High‐resolution near‐infrared spectroscopy of water dimer , 1989 .

[36]  Vincenzo Barone,et al.  Anharmonic vibrational properties by a fully automated second-order perturbative approach. , 2005, The Journal of chemical physics.

[37]  Sotiris S. Xantheas,et al.  Ab initio studies of cyclic water clusters (H2O)n, n=1–6. I. Optimal structures and vibrational spectra , 1993 .

[38]  D. Smith,et al.  Anharmonic force constants of water , 1972 .

[39]  D. Newnham,et al.  Laboratory measurements of water vapour continuum absorption in spectral region 5000–5600 cm−1: Evidence for water dimers , 2004 .

[40]  D. Coker,et al.  The infrared predissociation spectra of water clusters , 1985 .

[41]  E. Knözinger,et al.  Inelastic Neutron Scattering and Far IR Spectroscopy of Acetonitrile in Solid Ar and CCl4 Matrices , 1985 .

[42]  M. Jacox,et al.  The Mid- and Near-Infrared Spectra of Water and Water Dimer Isolated in Solid Neon , 1993 .

[43]  V. M. Devi,et al.  THE HITRAN MOLECULAR DATABASE: EDITIONS OF 1991 AND 1992 , 1992 .

[44]  Nauta,et al.  Formation of cyclic water hexamer in liquid helium: the smallest piece of Ice , 2000, Science.

[45]  R. Saykally,et al.  Determination of a flexible (12D) water dimer potential via direct inversion of spectroscopic data , 2002 .

[46]  M. Viant,et al.  Quantitative characterization of the (D2O)(3) torsional manifold by terahertz laser spectroscopy and theoretical analysis , 1999 .

[47]  J. Baggott Normal modes and local modes in H2 X: beyond the x, K relations , 1988 .

[48]  B. Nelander,et al.  Water dimer in solid neon. Far-infrared spectrum , 2004 .

[49]  R. Saykally,et al.  Spectroscopic determination of the water pair potential. , 1999, Science.

[50]  G. R. Low,et al.  Calculation of OH-stretching band intensities of the water dimer and trimer , 1999 .

[51]  P. Macko,et al.  The absorption spectrum of water near 750 nm by CW-CRDS: contribution to the search of water dimer absorption. , 2005, Physical chemistry chemical physics : PCCP.

[52]  J. Perchard,et al.  MATRIX ISOLATION INFRARED SPECTROSCOPY AND DFT CALCULATIONS OF COMPLEXES BETWEEN WATER AND NITROGEN , 1998 .

[53]  W. S. Benedict,et al.  Rotation‐Vibration Spectra of Deuterated Water Vapor , 1956 .

[54]  Sotiris S. Xantheas,et al.  Development of transferable interaction models for water. III. Reparametrization of an all-atom polarizable rigid model (TTM2–R) from first principles , 2002 .

[55]  C. J. Keoshian,et al.  QUANTITATIVE CHARACTERIZATION OF THE WATER TRIMER TORSIONAL MANIFOLD BY TERAHERTZ LASER SPECTROSCOPY AND THEORETICAL ANALYSIS. II. (H2O)3 , 1999 .

[56]  G. Groenenboom,et al.  Vibrations, tunneling, and transition dipole moments in the water dimer , 2001 .

[57]  J. B. Paul,et al.  Direct Measurement of Water Cluster Concentrations by Infrared Cavity Ringdown Laser Absorption Spectroscopy , 1997 .

[58]  J. Rzepiela,et al.  Dynamics of Structural Rearrangements in the Water Trimer , 1994 .

[59]  H. Schaefer,et al.  Detailed study of the water trimer potential energy surface , 1995 .

[60]  G. Shields,et al.  Prediction of accurate anharmonic experimental vibrational frequencies for water clusters, (H2O)n, n=2-5. , 2006, The journal of physical chemistry. A.

[61]  Robert J. Harrison,et al.  Development of transferable interaction models for water. II. Accurate energetics of the first few water clusters from first principles , 2002 .

[62]  F. Keutsch,et al.  The water trimer. , 2003, Chemical reviews.

[63]  V. Vaida,et al.  Hydrated Complexes: Relevance to Atmospheric Chemistry and Climate , 2003 .

[64]  G. Durocher,et al.  Anharmonicity and hydrogen bonding: Part II. Examples of moderately strong OH⋯Y bonds , 1965 .

[65]  C. Sandorfy,et al.  Anharmonicity and hydrogen bonding: Part III. Examples of strong bonds. General discussion , 1966 .

[66]  W. Luck,et al.  Combination Vibration of Neighbouring Molecules in Liquid Hod (IN D2O) , 1979 .

[67]  G. Rauhut Efficient calculation of potential energy surfaces for the generation of vibrational wave functions. , 2004, The Journal of chemical physics.

[68]  G. Groenenboom,et al.  Water pair potential of near spectroscopic accuracy. II. Vibration-rotation-tunneling levels of the water dimer , 2000 .

[69]  J. B. Paul,et al.  Infrared Cavity Ringdown Spectroscopy of the Water Cluster Bending Vibrations , 1999 .

[70]  G. Karlström,et al.  Intermolecular vibrations of the water trimer, a matrix isolation study. , 2005, The journal of physical chemistry. A.