Numerical Modeling of SRH and Tunneling Mechanisms in High-Operating-Temperature MWIR HgCdTe Photodetectors

A combined experimental and numerical simulation study is presented on two sets of nominally identical $$\hbox {Hg}_{1-x}\hbox {Cd}_{x}\hbox {Te}$$Hg1-xCdxTe single-color back-illuminated midwave-infrared n-on-p photodetectors grown by liquid-phase epitaxy, p-doped with Hg vacancies and with Au, respectively. The present numerical model includes a novel formulation for band-to-band tunneling, which overcomes the intrinsic limitations of the classical Kane description without introducing numerical issues typical of other approaches. Our study confirms that adopting n-on-p architectures, avoiding metal vacancy doping, and reducing the acceptor density in the absorber region are prerequisites for obtaining high-operating-temperature photodetectors. A significant contribution to the dark current in both sets of devices is attributed to impact ionization, crucial to obtain a satisfactory explanation for the measured characteristics also at low to intermediate bias.

[1]  W. Read,et al.  Statistics of the Recombinations of Holes and Electrons , 1952 .

[2]  Jeremiah R. Lowney,et al.  Temperature and composition dependence of the energy gap of Hg1−xCdxTe by two‐photon magnetoabsorption techniques , 1990 .

[3]  Marion B. Reine,et al.  HgCdTe photodiodes for IR detection: a review , 2001, SPIE OPTO.

[4]  Michael A. Kinch Fundamental physics of infrared detector materials , 2000 .

[5]  A. Beer,et al.  Mercury cadmium telluride , 1981 .

[6]  W. Marsden I and J , 2012 .

[7]  Enrico Bellotti,et al.  Calculation of Auger Lifetimes in HgCdTe , 2011 .

[8]  D. Klaassen,et al.  A new recombination model for device simulation including tunneling , 1992 .

[9]  T. Ashley,et al.  Nonequilibrium devices for infra-red detection , 1985 .

[10]  F. Ma,et al.  HgCdTe electron avalanche photodiodes , 2004 .

[11]  Petra Ostermann,et al.  Mercury Cadmium Telluride Growth Properties And Applications , 2016 .

[12]  C. R. Crowell,et al.  Energy-Conservation Considerations in the Characterization of Impact Ionization in Semiconductors , 1972 .

[13]  Chang-Feng Wan,et al.  High operating temperature MWIR detectors , 2010, Defense + Commercial Sensing.

[14]  Christoph H. Grein,et al.  MWIR and LWIR HgCdTe Infrared Detectors Operated with Reduced Cooling Requirements , 2010 .

[15]  T. N. Casselman,et al.  Calculation of the Auger lifetime in p‐type Hg1‐xCdxTe , 1981 .

[16]  Rainer Breiter,et al.  Large-Format and Long-Wavelength Infrared Mercury Cadmium Telluride Detectors , 2013, Journal of Electronic Materials.

[17]  Johan Rothman,et al.  History-Dependent Impact Ionization Theory Applied to HgCdTe e-APDs , 2011 .

[18]  A. Rogalski Infrared detectors: status and trends , 2003 .

[19]  K. Ahmed,et al.  A compact analytical model of band-to-band tunneling in a nanoscale p-i-n diode , 2012, 2012 International Conference on Informatics, Electronics & Vision (ICIEV).

[20]  M. Fischetti,et al.  Generalized phonon-assisted Zener tunneling in indirect semiconductors with non-uniform electric fields: A rigorous approach , 2011, 1104.3713.

[21]  Michael A. Kinch,et al.  HgCdTe: Recent Trends in the Ultimate IR Semiconductor , 2010 .

[22]  Jaroslaw Rutkowski,et al.  Two-dimensional analysis of double-layer heterojunction HgCdTe photodiodes , 2001 .

[23]  Peter Capper,et al.  Mercury Cadmium Telluride: Growth, Properties and Applications , 2010 .

[24]  A Kinch Michael,et al.  State-of-the-Art Infrared Detector Technology , 2014 .

[25]  E. Kane Theory of Tunneling , 1961 .

[26]  S. Krishnamurthy,et al.  Model for minority carrier lifetimes in doped HgCdTe , 2005 .

[27]  Giovanni Ghione,et al.  Modeling Photocurrent Spectra of Single-Color and Dual-Band HgCdTe Photodetectors: Is 3D Simulation Unavoidable? , 2014, Journal of Electronic Materials.

[28]  Małgorzata Kopytko,et al.  Enhanced numerical analysis of current-voltage characteristics of long wavelength infrared n-on-p HgCdTe photodiodes , 2010 .

[29]  M. Weiler,et al.  Chapter 3 Magnetooptical Properties of Hg1-x Cdx Te Alloys , 1981 .

[30]  A. Syllaios,et al.  Minority carrier lifetime in mercury cadmium telluride , 1993 .

[31]  K. J. Riley,et al.  Background and temperature dependent current‐voltage characteristics of HgCdTe photodiodes , 1982 .

[32]  Neil T. Gordon,et al.  Reverse breakdown in long wavelength lateral collection CdxHg1−xTe diodes , 1990 .

[33]  P. K. Liao,et al.  Minority carrier lifetime in p-HgCdTe , 2005 .

[34]  R. Adar,et al.  Spatial integration of direct band-to-band tunneling currents in general device structures , 1992 .

[35]  Michael A. Kinch,et al.  The Future of Infrared; III–Vs or HgCdTe? , 2015, Journal of Electronic Materials.

[36]  Rita Rooyackers,et al.  Drain voltage dependent analytical model of tunnel field-effect transistors , 2011 .

[37]  S. M. Sze,et al.  Physics of semiconductor devices , 1969 .