Multimodal function optimisation with cuckoo search algorithm

Modern engineering and scientific optimisation problems are becoming complicated. In order to cope with the increasing level of difficulty of these problems, optimisation methods are required to find more than one solution to these problems. The aim of this paper is to gain an insight into the ability of cuckoo search to locate more than one solution for multimodal problems. We also study the performance of this algorithm in the additive white Gaussian noise. Numerical results are presented to show that the cuckoo search algorithm can successfully locate multiple solutions in both non-noise and additive white Gaussian noise with relatively high degree of accuracy.

[1]  Michael N. Vrahatis,et al.  Recent approaches to global optimization problems through Particle Swarm Optimization , 2002, Natural Computing.

[2]  Ilya Pavlyukevich Lévy flights, non-local search and simulated annealing , 2007, J. Comput. Phys..

[3]  Alain Pétrowski,et al.  A clearing procedure as a niching method for genetic algorithms , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[4]  Fred W. Glover,et al.  Tabu Search - Part I , 1989, INFORMS J. Comput..

[5]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[6]  Andries Petrus Engelbrecht,et al.  Locating multiple optima using particle swarm optimization , 2007, Appl. Math. Comput..

[7]  Michael N. Vrahatis,et al.  On the computation of all global minimizers through particle swarm optimization , 2004, IEEE Transactions on Evolutionary Computation.

[8]  Xin-She Yang Introduction to Mathematical Optimization: From Linear Programming to Metaheuristics , 2008 .

[9]  R. Fletcher Practical Methods of Optimization , 1988 .

[10]  Ralph R. Martin,et al.  A Sequential Niche Technique for Multimodal Function Optimization , 1993, Evolutionary Computation.

[11]  Clemens Elster,et al.  A method of trust region type for minimizing noisy functions , 1997, Computing.

[12]  P. John Clarkson,et al.  A Species Conserving Genetic Algorithm for Multimodal Function Optimization , 2002, Evolutionary Computation.

[13]  Xin Yao,et al.  Evolutionary programming using mutations based on the Levy probability distribution , 2004, IEEE Transactions on Evolutionary Computation.

[14]  Fred Glover,et al.  Tabu Search - Part II , 1989, INFORMS J. Comput..

[15]  Samir W. Mahfoud Niching methods for genetic algorithms , 1996 .

[16]  Xin-She Yang,et al.  Engineering optimisation by cuckoo search , 2010, Int. J. Math. Model. Numer. Optimisation.

[17]  V. P. Plagianakos,et al.  Clustering inEvolutionary Algorithms toEfficiently ComputeSimultaneously Local andGlobal Minima , 2005 .

[18]  Kalyanmoy Deb,et al.  A Bi-criterion Approach to Multimodal Optimization: Self-adaptive Approach , 2010, SEAL.

[19]  M.M.A. Salama,et al.  Opposition-Based Differential Evolution , 2008, IEEE Transactions on Evolutionary Computation.

[20]  Sudhanshu K. Mishra,et al.  Some New Test Functions for Global Optimization and Performance of Repulsive Particle Swarm Method , 2006 .

[21]  Georges R. Harik,et al.  Finding Multimodal Solutions Using Restricted Tournament Selection , 1995, ICGA.

[22]  Xin-She Yang,et al.  Cuckoo Search via Lévy flights , 2009, 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC).

[23]  Xin-She Yang,et al.  Firefly Algorithm, Lévy Flights and Global Optimization , 2010, SGAI Conf..

[24]  A. Reynolds,et al.  Free-Flight Odor Tracking in Drosophila Is Consistent with an Optimal Intermittent Scale-Free Search , 2007, PloS one.

[25]  Ponnuthurai N. Suganthan,et al.  Novel multimodal problems and differential evolution with ensemble of restricted tournament selection , 2010, IEEE Congress on Evolutionary Computation.

[26]  Jani Rönkkönen ContinuousMultimodal Global Optimization with Differential Evolution-Based Methods , 2009 .

[27]  Clifford T. Brown,et al.  Lévy Flights in Dobe Ju/’hoansi Foraging Patterns , 2007 .

[28]  Daniela Zaharie A MULTIPOPULATION DIFFERENTIAL EVOLUTION ALGORITHM FOR MULTIMODAL OPTIMIZATION , 2004 .

[29]  Virginia Torczon,et al.  On the Convergence of the Multidirectional Search Algorithm , 1991, SIAM J. Optim..

[30]  Kenneth Alan De Jong,et al.  An analysis of the behavior of a class of genetic adaptive systems. , 1975 .

[31]  M. N. Vrahatis,et al.  Objective function “stretching” to alleviate convergence to local minima , 2001 .

[32]  David E. Goldberg,et al.  Genetic Algorithms with Sharing for Multimodalfunction Optimization , 1987, ICGA.