Geodetic Convexity Parameters for Graphs with Few Short Induced Paths

We study several parameters of geodetic convexity for graph classes defined by restrictions concerning short induced paths. Partially answering a question posed by Araujo et al., we show that computing the geodetic hull number of a given $$P_9$$-free graph is NP-hard. Similarly, we show that computing the geodetic interval number of a given $$P_5$$-free graph is NP-hard. On the positive side, we identify several graph classes for which the geodetic hull number can be computed efficiently. Furthermore, following a suggestion of Campos et al., we show that the geodetic interval number, the geodetic convexity number, the geodetic Caratheodory number, and the geodetic Radon number can all be computed in polynomial time for $$q,q-4$$-graphs.

[1]  J. Radon Mengen konvexer Körper, die einen gemeinsamen Punkt enthalten , 1921 .

[2]  Jayme Luiz Szwarcfiter,et al.  Near-linear-time algorithm for the geodetic Radon number of grids , 2016, Discret. Appl. Math..

[3]  M. Farber,et al.  Convexity in graphs and hypergraphs , 1986 .

[4]  Jayme Luiz Szwarcfiter,et al.  On the Convexity Number of Graphs , 2012, Graphs Comb..

[5]  Sandi Klavzar,et al.  The All-Paths Transit Function of a Graph , 2001 .

[6]  Lhouari Nourine,et al.  Polynomial Time Algorithms for Computing a Minimum Hull Set in Distance-Hereditary and Chordal Graphs , 2013, SIAM J. Discret. Math..

[7]  Nicolas Nisse,et al.  On the hull number of some graph classes , 2013, Theor. Comput. Sci..

[8]  Jayme Luiz Szwarcfiter,et al.  Some remarks on the geodetic number of a graph , 2010, Discret. Math..

[9]  Martin G. Everett,et al.  The hull number of a graph , 1985, Discret. Math..

[10]  Pierre Duchet,et al.  Convex sets in graphs, II. Minimal path convexity , 1987, J. Comb. Theory B.

[11]  C. Carathéodory Über den variabilitätsbereich der fourier’schen konstanten von positiven harmonischen funktionen , 1911 .

[12]  Stephan Olariu,et al.  On the Structure of Graphs with Few P4s , 1998, Discret. Appl. Math..

[13]  Kolja B. Knauer,et al.  Convexity in Partial Cubes: The Hull Number , 2014, LATIN.

[14]  Jayme Luiz Szwarcfiter,et al.  Graphs with few P4's under the convexity of paths of order three , 2015, Discret. Appl. Math..

[15]  Gary Chartrand,et al.  The Convexity Number of a Graph , 2002, Graphs Comb..

[16]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[17]  Feodor F. Dragan,et al.  Convexity and HHD-Free Graphs , 1999, SIAM J. Discret. Math..

[18]  Jayme Luiz Szwarcfiter,et al.  On the Carathéodory number of interval and graph convexities , 2013, Theor. Comput. Sci..

[19]  Jayme Luiz Szwarcfiter,et al.  On the Hull Number of Triangle-Free Graphs , 2010, SIAM J. Discret. Math..

[20]  John Gimbel Some Remarks on the Convexity Number of a Graph , 2003, Graphs Comb..

[21]  Jayme Luiz Szwarcfiter,et al.  On the geodetic Radon number of grids , 2013, Discret. Math..

[22]  Tinaz Ekim,et al.  Block decomposition approach to compute a minimum geodetic set , 2014, RAIRO Oper. Res..

[23]  Júlio Araújo,et al.  Hull number: P5-free graphs and reduction rules , 2016, Discret. Appl. Math..

[24]  Manoj Changat,et al.  On triangle path convexity in graphs , 1999, Discret. Math..

[25]  Jayme Luiz Szwarcfiter,et al.  On the computation of the hull number of a graph , 2009, Discret. Math..

[26]  Jayme Luiz Szwarcfiter,et al.  Complexity results related to monophonic convexity , 2010, Discret. Appl. Math..

[27]  Manoj Changat,et al.  Triangle path transit functions, betweenness and pseudo-modular graphs , 2009, Discret. Math..

[28]  F. Harary,et al.  The geodetic number of a graph , 1993 .

[29]  Pim van 't Hof,et al.  Computing Minimum Geodetic Sets of Proper Interval Graphs , 2012, LATIN.

[30]  Jayme Luiz Szwarcfiter,et al.  The convexity of induced paths of order three and applications: Complexity aspects , 2017, Discret. Appl. Math..