Geodetic Convexity Parameters for Graphs with Few Short Induced Paths
暂无分享,去创建一个
Dieter Rautenbach | Mitre Costa Dourado | Lucia Draque Penso | D. Rautenbach | M. C. Dourado | L. Penso
[1] J. Radon. Mengen konvexer Körper, die einen gemeinsamen Punkt enthalten , 1921 .
[2] Jayme Luiz Szwarcfiter,et al. Near-linear-time algorithm for the geodetic Radon number of grids , 2016, Discret. Appl. Math..
[3] M. Farber,et al. Convexity in graphs and hypergraphs , 1986 .
[4] Jayme Luiz Szwarcfiter,et al. On the Convexity Number of Graphs , 2012, Graphs Comb..
[5] Sandi Klavzar,et al. The All-Paths Transit Function of a Graph , 2001 .
[6] Lhouari Nourine,et al. Polynomial Time Algorithms for Computing a Minimum Hull Set in Distance-Hereditary and Chordal Graphs , 2013, SIAM J. Discret. Math..
[7] Nicolas Nisse,et al. On the hull number of some graph classes , 2013, Theor. Comput. Sci..
[8] Jayme Luiz Szwarcfiter,et al. Some remarks on the geodetic number of a graph , 2010, Discret. Math..
[9] Martin G. Everett,et al. The hull number of a graph , 1985, Discret. Math..
[10] Pierre Duchet,et al. Convex sets in graphs, II. Minimal path convexity , 1987, J. Comb. Theory B.
[11] C. Carathéodory. Über den variabilitätsbereich der fourier’schen konstanten von positiven harmonischen funktionen , 1911 .
[12] Stephan Olariu,et al. On the Structure of Graphs with Few P4s , 1998, Discret. Appl. Math..
[13] Kolja B. Knauer,et al. Convexity in Partial Cubes: The Hull Number , 2014, LATIN.
[14] Jayme Luiz Szwarcfiter,et al. Graphs with few P4's under the convexity of paths of order three , 2015, Discret. Appl. Math..
[15] Gary Chartrand,et al. The Convexity Number of a Graph , 2002, Graphs Comb..
[16] David S. Johnson,et al. Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .
[17] Feodor F. Dragan,et al. Convexity and HHD-Free Graphs , 1999, SIAM J. Discret. Math..
[18] Jayme Luiz Szwarcfiter,et al. On the Carathéodory number of interval and graph convexities , 2013, Theor. Comput. Sci..
[19] Jayme Luiz Szwarcfiter,et al. On the Hull Number of Triangle-Free Graphs , 2010, SIAM J. Discret. Math..
[20] John Gimbel. Some Remarks on the Convexity Number of a Graph , 2003, Graphs Comb..
[21] Jayme Luiz Szwarcfiter,et al. On the geodetic Radon number of grids , 2013, Discret. Math..
[22] Tinaz Ekim,et al. Block decomposition approach to compute a minimum geodetic set , 2014, RAIRO Oper. Res..
[23] Júlio Araújo,et al. Hull number: P5-free graphs and reduction rules , 2016, Discret. Appl. Math..
[24] Manoj Changat,et al. On triangle path convexity in graphs , 1999, Discret. Math..
[25] Jayme Luiz Szwarcfiter,et al. On the computation of the hull number of a graph , 2009, Discret. Math..
[26] Jayme Luiz Szwarcfiter,et al. Complexity results related to monophonic convexity , 2010, Discret. Appl. Math..
[27] Manoj Changat,et al. Triangle path transit functions, betweenness and pseudo-modular graphs , 2009, Discret. Math..
[28] F. Harary,et al. The geodetic number of a graph , 1993 .
[29] Pim van 't Hof,et al. Computing Minimum Geodetic Sets of Proper Interval Graphs , 2012, LATIN.
[30] Jayme Luiz Szwarcfiter,et al. The convexity of induced paths of order three and applications: Complexity aspects , 2017, Discret. Appl. Math..