On the Existence of (k,l)-Kernels in Infinite Digraphs: A Survey

Abstract Let D be a digraph, V (D) and A(D) will denote the sets of vertices and arcs of D, respectively. A (k, l)-kernel N of D is a k-independent (if u, v ∈ N, u 6= v, then d(u, v), d(v, u) ≥ k) and l-absorbent (if u ∈ V (D) − N then there exists v ∈ N such that d(u, v) ≤ l) set of vertices. A k-kernel is a (k, k −1)-kernel. This work is a survey of results proving sufficient conditions for the existence of (k, l)-kernels in infinite digraphs. Despite all the previous work in this direction was done for (2, 1)-kernels, we present many original results concerning (k, l)-kernels for distinct values of k and l. The original results are sufficient conditions for the existence of (k, l)- kernels in diverse families of infinite digraphs. Among the families that we study are: transitive digraphs, quasi-transitive digraphs, right/left pretransitive digraphs, cyclically k-partite digraphs, κ-strong digraphs, k-transitive digraphs, k-quasi-transitive digraphs

[1]  Sergio Rajsbaum,et al.  New combinatorial topology bounds for renaming: the lower bound , 2010, Distributed Computing.

[2]  Gregory Gutin,et al.  Digraphs - theory, algorithms and applications , 2002 .

[3]  Assia Benabdallah,et al.  The Kalman condition for the boundary controllability of coupled parabolic systems. Bounds on biorthogonal families to complex matrix exponentials , 2011 .

[4]  Assia Benabdallah,et al.  Controllability to trajectories for some parabolic systems of three and two equations by one control force , 2013 .

[5]  Jørgen Bang-Jensen,et al.  Quasi-transitive digraphs , 1995, J. Graph Theory.

[6]  J. A. Bondy,et al.  Graph Theory with Applications , 1978 .

[7]  Filomena Pacella,et al.  Self-focusing Multibump Standing Waves in Expanding Waveguides , 2011 .

[8]  Hortensia Galeana-Sánchez,et al.  A classification of arc-locally semicomplete digraphs , 2009, Electron. Notes Discret. Math..

[9]  Aviezri S. Fraenkel,et al.  Combinatorial game theory foundations applied to digraph kernels , 1996, Electron. J. Comb..

[10]  Katta G. Murty,et al.  On KΔ , 1986, Discret. Appl. Math..

[11]  Hortensia Galeana-Sánchez,et al.  Monochromatic paths and monochromatic sets of arcs in bipartite tournaments , 2009, Discuss. Math. Graph Theory.

[12]  Pavol Hell,et al.  On the Complexity of the 3-Kernel Problem in Some Classes of Digraphs , 2014, Discuss. Math. Graph Theory.

[13]  A. Włoch,et al.  On the existence of (k,k-1) - kernels in directed graphs , 2006 .

[14]  Filomena Pacella,et al.  Alternating Sign Multibump Solutions of Nonlinear Elliptic Equations in Expanding Tubular Domains , 2012, 1210.4229.

[15]  Hortensia Galeana-Sánchez,et al.  On the existence of (k, l)-kernels in digraphs , 1990, Discret. Math..

[16]  Hortensia Galeana-Sánchez,et al.  Kernels by monochromatic paths and the color-class digraph , 2011, Discuss. Math. Graph Theory.

[17]  Henry Meyniel,et al.  Kernels in directed graphs: a poison game , 1993, Discret. Math..

[18]  Hortensia Galeana-Sánchez,et al.  On the existence and number of (k+1)-kings in k-quasi-transitive digraphs , 2012, Discret. Math..

[19]  Hortensia Galeana-Sánchez,et al.  A sufficient condition for the existence of k-kernels in digraphs , 1998, Discuss. Math. Graph Theory.

[20]  Magdalena Kucharska,et al.  On (k, l)-kernels of special superdigraphs of Pm and Cm , 2001, Discuss. Math. Graph Theory.

[21]  Victor Hernandez-Urbina,et al.  Applying DNA computing to diagnose-and-interfere hepatic fibrosis , 2010, 2010 Sixth International Conference on Natural Computation.

[22]  P. Duchet,et al.  Graphes Noyau-Parfaits , 1980 .

[23]  Hortensia Galeana-Sánchez,et al.  K-kernels in Generalizations of Transitive Digraphs , 2011, Discuss. Math. Graph Theory.

[24]  Hortensia Galeana-Sánchez,et al.  Cyclically k-partite digraphs and k-kernels , 2011, Discuss. Math. Graph Theory.

[25]  Hortensia Galeana-Sánchez,et al.  On the structure of strong 3-quasi-transitive digraphs , 2010, Discret. Math..

[26]  Mićo Durdević Geometry of quantum principal bundles I , 1996 .

[27]  Iwona Wloch,et al.  On the existence and on the number of (k, l)-kernels in the lexicographic product of graphs , 2008, Discret. Math..

[28]  Mika Olsen,et al.  Kernels by monochromatic paths in digraphs with covering number 2 , 2011, Discret. Math..

[29]  M. Richardson On weakly ordered systems , 1946 .

[30]  Sergio Rajsbaum,et al.  New combinatorial topology bounds for renaming: The upper bound , 2012, JACM.

[31]  P. Seymour,et al.  The Strong Perfect Graph Theorem , 2002, math/0212070.

[32]  E. Rowland Theory of Games and Economic Behavior , 1946, Nature.

[34]  Hortensia Galeana-Sánchez A new characterization of perfect graphs , 2012, Discret. Math..

[35]  Xueliang Li,et al.  Kernels in infinite digraphs , 2010 .

[36]  Amaury Lambert,et al.  Proof(s) of the Lamperti representation of Continuous-State Branching Processes , 2008, 0802.2693.

[37]  Hortensia Galeana-Sánchez,et al.  Monochromatic cycles and monochromatic paths in arc-colored digraphs , 2011, Discuss. Math. Graph Theory.

[38]  Hortensia Galeana-Sánchez,et al.  K-kernels in K-transitive and K-quasi-transitive Digraphs , 2012, Discret. Math..

[39]  Péter L. Erdös,et al.  Quasi-kernels and quasi-sinks in infinite graphs , 2009, Discret. Math..

[40]  Hortensia Galeana-Sánchez,et al.  Monochromatic paths and monochromatic sets of arcs in 3-quasitransitive digraphs , 2009, Discuss. Math. Graph Theory.

[41]  Jaroslav Nesetril,et al.  Graphs and homomorphisms , 2004, Oxford lecture series in mathematics and its applications.

[42]  Hortensia Galeana-Sánchez,et al.  Some sufficient conditions for the existence of kernels in infinite digraphs , 2009, Discret. Math..

[43]  Iwona Wloch,et al.  On (k, l)-kernels in D-join of digraphs , 2007, Discuss. Math. Graph Theory.

[44]  L. Lovász,et al.  Every directed graph has a semi-kernel , 1974 .

[45]  SzumnyWaldemar,et al.  On the existence and on the number of (k,l)-kernels in the lexicographic product of graphs , 2008 .