Analysis of an Upwind-Mixed Hybrid Finite Element Method for Transport Problems

We prove optimal order convergence of an upwind-mixed hybrid finite element scheme for linear parabolic advection-diffusion-reaction problems. It was introduced in [Radu et al., Adv. Water Resources, 34 (2011), pp. 47--61] and is based on an Euler-implicit mixed hybrid finite element discretization of the problem in fully mass conservative form using the Raviart--Thomas mixed finite element of lowest order on triangular meshes. Optimal order convergence in time and space is obtained for the fully discrete formulation. The scheme provides the same order of convergence as the standard upwind-mixed method, while it is more efficient since a local elimination of variables is possible with our choice of the upwind weights. The theoretical findings are sustained by a numerical experiment.

[1]  Peter Knabner,et al.  Optimal order convergence of a modified BDM1 mixed finite element scheme for reactive transport in porous media , 2012 .

[2]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[3]  Stefano Micheletti,et al.  On Some Mixed Finite Element Methods with Numerical Integration , 2001, SIAM J. Sci. Comput..

[4]  Christian Wieners,et al.  Distributed Point Objects. A New Concept for Parallel Finite Elements , 2005 .

[5]  Bo Dong,et al.  A Hybridizable Discontinuous Galerkin Method for Steady-State Convection-Diffusion-Reaction Problems , 2009, SIAM J. Sci. Comput..

[6]  Carol S. Woodward,et al.  Analysis of Expanded Mixed Finite Element Methods for a Nonlinear Parabolic Equation Modeling Flow into Variably Saturated Porous Media , 2000, SIAM J. Numer. Anal..

[7]  Jean E. Roberts,et al.  Global estimates for mixed methods for second order elliptic equations , 1985 .

[8]  Peter Knabner,et al.  A priori error estimates for a mixed finite element discretization of the Richards’ equation , 2004, Numerische Mathematik.

[9]  C. Dawson Godunov-mixed methods for advection-diffusion equations in multidimensions , 1993 .

[10]  C. Dawson Godunov-mixed methods for advective flow problems in one space dimension , 1991 .

[11]  R. Durán,et al.  Error analysis in L p 6 p 6 ∞ , for mixed finite element methods for linear and quasi-linear elliptic problems , 2009 .

[12]  D. Arnold,et al.  Mixed and nonconforming finite element methods : implementation, postprocessing and error estimates , 1985 .

[13]  Sabine Attinger,et al.  Analysis of an Euler implicit‐mixed finite element scheme for reactive solute transport in porous media , 2009 .

[14]  Joachim Schöberl,et al.  A Mixed-Hybrid-Discontinuous Galerkin Finite Element Method for Convection-Diffusion Problems , 2008 .

[15]  N. SIAMJ.,et al.  SUBOPTIMAL AND OPTIMAL CONVERGENCE IN MIXED FINITE ELEMENT METHODS , 2002 .

[16]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[17]  Riccardo Sacco,et al.  Stabilization of mixed finite elements for convection-diffusion problems , 1997 .

[18]  Jean E. Roberts,et al.  Mixed and hybrid finite element methods , 1987 .

[19]  P. Ackerer,et al.  Mixed finite elements for solving 2‐D diffusion‐type equations , 2010 .

[20]  Clint Dawson,et al.  Analysis of an Upwind-Mixed Finite Element Method for Nonlinear contaminant Transport Equations , 1998 .

[21]  Sabine Attinger,et al.  Accuracy of numerical simulations of contaminant transport in heterogeneous aquifers: A comparative study , 2011 .

[22]  Todd Arbogast,et al.  A Nonlinear Mixed Finite Eelement Method for a Degenerate Parabolic Equation Arising in Flow in Porous Media , 1996 .

[23]  Peter Knabner,et al.  Order of Convergence Estimates for an Euler Implicit, Mixed Finite Element Discretization of Richards' Equation , 2004, SIAM J. Numer. Anal..

[24]  James Demmel,et al.  A Supernodal Approach to Sparse Partial Pivoting , 1999, SIAM J. Matrix Anal. Appl..

[25]  L. D. Marini,et al.  Two families of mixed finite elements for second order elliptic problems , 1985 .

[26]  Clint Dawson,et al.  Upwind‐mixed methods for transport equations , 1999 .

[27]  Martin Vohralík,et al.  A Posteriori Error Estimates for Lowest-Order Mixed Finite Element Discretizations of Convection-Diffusion-Reaction Equations , 2007, SIAM J. Numer. Anal..

[28]  O. A. Ladyzhenskai︠a︡,et al.  Linear and Quasi-linear Equations of Parabolic Type , 1995 .