The influence of vertically and horizontally aligned visual distractors on aurally guided saccadic eye movements

[1]  S. Stigchel,et al.  Non-lateralized auditory input enhances averaged vectors in the oculomotor system , 2012, Experimental Brain Research.

[2]  Zachary P. Barnett,et al.  Interactions between the spatial and temporal stimulus factors that influence multisensory integration in human performance , 2012, Experimental Brain Research.

[3]  Stefan Van der Stigchel,et al.  The global effect: what determines where the eyes land? , 2011 .

[4]  J. Theeuwes,et al.  A global effect of capture saccades , 2011, Experimental Brain Research.

[5]  Erik D. Reichle,et al.  Lexical and Post-Lexical Complexity Effects on Eye Movements in Reading. , 2011, Journal of eye movement research.

[6]  Stefan Van der Stigchel,et al.  Recent advances in the study of saccade trajectory deviations , 2010, Vision Research.

[7]  Kaitlin E W Laidlaw,et al.  The time course of vertical, horizontal and oblique saccade trajectories: Evidence for greater distractor interference during vertical saccades , 2010, Vision Research.

[8]  S. Stigchel,et al.  The imbalance of oculomotor capture in unilateral visual neglect , 2010, Consciousness and Cognition.

[9]  S. van der Stigchel Recent advances in the study of saccade trajectory deviations. , 2010, Vision research.

[10]  Hans Colonius,et al.  Time-Window-of-Integration (TWIN) Model for Saccadic Reaction Time: Effect of Auditory Masker Level on Visual–Auditory Spatial Interaction in Elevation , 2009, Brain Topography.

[11]  J. Theeuwes,et al.  Differences in distractor-induced deviation between horizontal and vertical saccade trajectories , 2008, Neuroreport.

[12]  Howard E Egeth,et al.  Biased competition and visual search: the role of luminance and size contrast , 2007, Psychological research.

[13]  Nadia Bolognini,et al.  Multisensory-Mediated Auditory Localization , 2006, Perception.

[14]  D. Whitaker,et al.  Sensory uncertainty governs the extent of audio-visual interaction , 2004, Vision Research.

[15]  Amelia R Hunt,et al.  Integration of competing saccade programs. , 2004, Brain research. Cognitive brain research.

[16]  N. Bolognini,et al.  “Acoustical vision” of below threshold stimuli: interaction among spatially converging audiovisual inputs , 2004, Experimental Brain Research.

[17]  D. Munoz,et al.  Evidence for interactions between target selection and visual fixation for saccade generation in humans , 2004, Experimental Brain Research.

[18]  M. A. Frens,et al.  A quantitative study of auditory-evoked saccadic eye movements in two dimensions , 2004, Experimental Brain Research.

[19]  C. Spence,et al.  Multimodal visual–somatosensory integration in saccade generation , 2003, Neuropsychologia.

[20]  W. C. Hall,et al.  The Superior Colliculus : New Approaches for Studying Sensorimotor Integration , 2003 .

[21]  Robert A Jacobs,et al.  Bayesian integration of visual and auditory signals for spatial localization. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[22]  M. Wallace,et al.  Visual Localization Ability Influences Cross-Modal Bias , 2003, Journal of Cognitive Neuroscience.

[23]  J. Theeuwes,et al.  Oculomotor capture and Inhibition of Return: Evidence for an oculomotor suppression account of IOR , 2002, Psychological research.

[24]  A J Van Opstal,et al.  Auditory-visual interactions subserving goal-directed saccades in a complex scene. , 2002, Journal of neurophysiology.

[25]  A. Smit,et al.  Synapse Formation between Central Neurons Requires Postsynaptic Expression of the MEN1 Tumor Suppressor Gene , 2001, The Journal of Neuroscience.

[26]  M. P. Zwiers,et al.  A Spatial Hearing Deficit in Early-Blind Humans , 2001, The Journal of Neuroscience.

[27]  H Colonius,et al.  A two-stage model for visual-auditory interaction in saccadic latencies , 2001, Perception & psychophysics.

[28]  R. Walker,et al.  Multisensory interactions in saccade target selection: Curved saccade trajectories , 2001, Experimental Brain Research.

[29]  David E. Irwin,et al.  Influence of attentional capture on oculomotor control. , 1999, Journal of experimental psychology. Human perception and performance.

[30]  G. Aschersleben,et al.  Automatic visual bias of perceived auditory location , 1998 .

[31]  D. E. Irwin,et al.  Our Eyes do Not Always Go Where we Want Them to Go: Capture of the Eyes by New Objects , 1998 .

[32]  H. Deubel,et al.  Effect of remote distractors on saccade programming: evidence for an extended fixation zone. , 1997, Journal of neurophysiology.

[33]  S. Tipper,et al.  Selective Reaching to Grasp: Evidence for Distractor Interference Effects , 1997 .

[34]  D P Munoz,et al.  The Influence of Auditory and Visual Distractors on Human Orienting Gaze Shifts , 1996, The Journal of Neuroscience.

[35]  R. Gilkey,et al.  Sound localization in noise: the effect of signal-to-noise ratio. , 1996, The Journal of the Acoustical Society of America.

[36]  M. Frens,et al.  Spatial and temporal factors determine auditory-visual interactions in human saccadic eye movements , 1995, Perception & psychophysics.

[37]  D. M. Green,et al.  Sound localization by human listeners. , 1991, Annual review of psychology.

[38]  D. Sparks,et al.  The deep layers of the superior colliculus. , 1989, Reviews of oculomotor research.

[39]  D L Sparks,et al.  Translation of sensory signals into commands for control of saccadic eye movements: role of primate superior colliculus. , 1986, Physiological reviews.

[40]  J. Findlay Global visual processing for saccadic eye movements , 1982, Vision Research.

[41]  B. Stein,et al.  Sources of subcortical projections to the superior colliculus in the cat , 1979, The Journal of comparative neurology.

[42]  S. Coren,et al.  Effect of Non-Target Stimuli upon Length of Voluntary Saccades , 1972, Perceptual and motor skills.