Let $\mathcal{A}$ be an abelian category, or more generally a weakly idempotent complete exact category, and suppose we have two complete hereditary cotorsion pairs $(\mathcal{Q}, \widetilde{\mathcal{R}})$ and $(\widetilde{\mathcal{Q}}, \mathcal{R})$ in $\mathcal{A}$ satisfying $\widetilde{\mathcal{R}} \subseteq \mathcal{R}$ and $\mathcal{Q} \cap \widetilde{\mathcal{R}} = \widetilde{\mathcal{Q}} \cap \mathcal{R}$. We show how to construct a (necessarily unique) abelian model structure on $\mathcal{A}$ with $\mathcal{Q}$ (respectively $\widetilde{\mathcal{Q}}$) as the class of cofibrant (resp. trivially cofibrant) objects and $\mathcal{R}$ (respectively $\widetilde{\mathcal{R}}$) as the class of fibrant (resp. trivially fibrant) objects.
[1]
Mark Hovey,et al.
The stable module category of a general ring
,
2014,
1405.5768.
[2]
James Gillespie.
Gorenstein complexes and recollements from cotorsion pairs
,
2012,
1210.0196.
[3]
Hanno Becker.
Models for singularity categories
,
2012,
1205.4473.
[4]
James Gillespie.
Model structures on exact categories
,
2010,
1009.3574.
[5]
Theo Buehler,et al.
Exact Categories
,
2008,
0811.1480.
[6]
Mark Hovey.
Cotorsion pairs, model category structures, and representation theory
,
2002
.