Precise parameter synthesis for stochastic biochemical systems

We consider the problem of synthesising rate parameters for stochastic biochemical networks so that a given time-bounded CSL property is guaranteed to hold, or, in the case of quantitative properties, the probability of satisfying the property is maximised or minimised. Our method is based on extending CSL model checking and standard uniformisation to parametric models, in order to compute safe bounds on the satisfaction probability of the property. We develop synthesis algorithms that yield answers that are precise to within an arbitrarily small tolerance value. The algorithms combine the computation of probability bounds with the refinement and sampling of the parameter space. Our methods are precise and efficient, and improve on existing approximate techniques that employ discretisation and refinement. We evaluate the usefulness of the methods by synthesising rates for three biologically motivated case studies: infection control for a SIR epidemic model; reliability analysis of molecular computation by a DNA walker; and bistability in the gene regulation of the mammalian cell cycle.

[1]  Chris Thachuk,et al.  DNA walker circuits: computational potential, design, and verification , 2013, Natural Computing.

[2]  Peter W. Glynn,et al.  Computing Poisson probabilities , 1988, CACM.

[3]  Mahesh Viswanathan,et al.  Model-Checking Markov Chains in the Presence of Uncertainties , 2006, TACAS.

[4]  David Safránek,et al.  Parameter Identification and Model Ranking of Thomas Networks , 2012, CMSB.

[5]  Kevin R. Sanft,et al.  Legitimacy of the stochastic Michaelis-Menten approximation. , 2011, IET systems biology.

[6]  Nicola Paoletti,et al.  Precise Parameter Synthesis for Stochastic Biochemical Systems , 2014, CMSB.

[7]  Parosh Aziz Abdulla,et al.  Fast Adaptive Uniformization of the Chemical Master Equation , 2010 .

[8]  Marta Z. Kwiatkowska,et al.  Stochastic Model Checking , 2007, SFM.

[9]  G. Sanguinetti,et al.  Learning and Designing Stochastic Processes from Logical Constraints , 2013, QEST.

[10]  Marta Z. Kwiatkowska,et al.  Computing Cumulative Rewards Using Fast Adaptive Uniformisation , 2013, Computational Methods in Systems Biology.

[11]  Robert K. Brayton,et al.  Verifying Continuous Time Markov Chains , 1996, CAV.

[12]  Lubos Brim,et al.  Adaptive Aggregation of Markov Chains: Quantitative Analysis of Chemical Reaction Networks , 2015, CAV.

[13]  Rastislav Bodík,et al.  Synthesis of biological models from mutation experiments , 2013, POPL.

[14]  Marta Z. Kwiatkowska,et al.  PRISM 4.0: Verification of Probabilistic Real-Time Systems , 2011, CAV.

[15]  Luca Bortolussi,et al.  Smoothed model checking for uncertain Continuous-Time Markov Chains , 2014, Inf. Comput..

[16]  Joost-Pieter Katoen,et al.  Three-Valued Abstraction for Continuous-Time Markov Chains , 2007, CAV.

[17]  Lubos Brim,et al.  Exploring Parameter Space of Stochastic Biochemical Systems Using Quantitative Model Checking , 2013, CAV.

[18]  Calin Belta,et al.  Controlling a Class of Nonlinear Systems on Rectangles , 2006, IEEE Transactions on Automatic Control.

[19]  Antoine Girard,et al.  Control of polynomial dynamical systems on rectangles , 2013, 2013 European Control Conference (ECC).

[20]  R. Courant,et al.  Introduction to Calculus and Analysis, Vol. 1 , 1965, The Mathematical Gazette.

[21]  P. Spreij Probability and Measure , 1996 .

[22]  Christel Baier,et al.  Model-Checking Algorithms for Continuous-Time Markov Chains , 2002, IEEE Trans. Software Eng..

[23]  Verena Wolf,et al.  Parameter Identification for Markov Models of Biochemical Reactions , 2011, CAV.

[24]  A. Jensen,et al.  Markoff chains as an aid in the study of Markoff processes , 1953 .

[25]  Marta Z. Kwiatkowska,et al.  Computing Cumulative Rewards Using Fast Adaptive Uniformization , 2015, ACM Trans. Model. Comput. Simul..

[26]  D. Gillespie Exact Stochastic Simulation of Coupled Chemical Reactions , 1977 .

[27]  W. O. Kermack,et al.  A contribution to the mathematical theory of epidemics , 1927 .

[28]  Alexandre Donzé,et al.  Breach, A Toolbox for Verification and Parameter Synthesis of Hybrid Systems , 2010, CAV.

[29]  W. O. Kermack,et al.  Contributions to the mathematical theory of epidemics—II. The problem of endemicity , 1991, Bulletin of mathematical biology.

[30]  Jonathan Bath,et al.  A DNA-based molecular motor that can navigate a network of tracks. , 2012, Nature nanotechnology.

[31]  Kishor S. Trivedi,et al.  Numerical transient analysis of markov models , 1988, Comput. Oper. Res..

[32]  C. Rao,et al.  Stochastic chemical kinetics and the quasi-steady-state assumption: Application to the Gillespie algorithm , 2003 .

[33]  Joost-Pieter Katoen,et al.  Approximate Parameter Synthesis for Probabilistic Time-Bounded Reachability , 2008, 2008 Real-Time Systems Symposium.

[34]  Lijun Zhang,et al.  Probabilistic reachability for parametric Markov models , 2010, International Journal on Software Tools for Technology Transfer.

[35]  L. Ronkin Liouville's theorems for functions holomorphic on the zero set of a polynomial , 1979 .

[36]  Sumit Kumar Jha,et al.  Synthesis and infeasibility analysis for stochastic models of biochemical systems using statistical model checking and abstraction refinement , 2011, Theor. Comput. Sci..

[37]  Ezio Bartocci,et al.  A Temporal Logic Approach to Modular Design of Synthetic Biological Circuits , 2013, CMSB.

[38]  Alexander E. Kel,et al.  Bifurcation analysis of the regulatory modules of the mammalian G1/S transition , 2004, Bioinform..

[39]  Zhen Zhang,et al.  Utilizing stochastic model checking to analyze genetic circuits , 2012, 2012 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB).

[40]  Jingwei Zhang,et al.  Adaptive aggregation method for the chemical master equation , 2008, 2008 8th IEEE International Conference on BioInformatics and BioEngineering.

[41]  Lijun Zhang,et al.  Model Repair for Markov Decision Processes , 2013, 2013 International Symposium on Theoretical Aspects of Software Engineering.

[42]  Thomas A. Henzinger,et al.  Fast Adaptive Uniformization of the Chemical Master Equation , 2009 .

[43]  R. Courant,et al.  Introduction to Calculus and Analysis , 1991 .

[44]  António Pacheco,et al.  Model checking expected time and expected reward formulae with random time bounds , 2006, Comput. Math. Appl..

[45]  W. O. Kermack,et al.  Contributions to the mathematical theory of epidemics—I , 1991, Bulletin of mathematical biology.

[46]  Calin Belta,et al.  Robustness analysis and tuning of synthetic gene networks , 2007, Bioinform..

[47]  Winfried K. Grassmann Transient solutions in markovian queueing systems , 1977, Comput. Oper. Res..

[48]  Nicola Paoletti,et al.  Analyzing and Synthesizing Genomic Logic Functions , 2014, CAV.