A clarification of misconceptions, myths and desired status of artificial intelligence

The field artificial intelligence (AI) has been founded over 65 years ago. Starting with great hopes and ambitious goals the field progressed though various stages of popularity and received recently a revival in the form of deep neural networks. Some problems of AI are that so far neither 'intelligence' nor the goals of AI are formally defined causing confusion when comparing AI to other fields. In this paper, we present a perspective on the desired and current status of AI in relation to machine learning and statistics and clarify common misconceptions and myths. Our discussion is intended to uncurtain the veil of vagueness surrounding AI to see its true countenance.

[1]  Matthias Dehmer,et al.  Understanding Statistical Hypothesis Testing: The Logic of Statistical Inference , 2019, Mach. Learn. Knowl. Extr..

[2]  Matthias Dehmer,et al.  Large-Scale Simultaneous Inference with Hypothesis Testing: Multiple Testing Procedures in Practice , 2019, Mach. Learn. Knowl. Extr..

[3]  Matthias Dehmer,et al.  High-Dimensional LASSO-Based Computational Regression Models: Regularization, Shrinkage, and Selection , 2019, Mach. Learn. Knowl. Extr..

[4]  Matthias Dehmer,et al.  Defining Data Science by a Data-Driven Quantification of the Community , 2018, Mach. Learn. Knowl. Extr..

[5]  Gordon K. Smyth,et al.  Generalized Linear Models With Examples in R , 2018 .

[6]  Isaac S Kohane,et al.  Artificial Intelligence in Healthcare , 2019, Artificial Intelligence and Machine Learning for Business for Non-Engineers.

[7]  Raymond C. Kurzweil,et al.  The Singularity Is Near , 2018, The Infinite Desire for Growth.

[8]  James Babcock,et al.  Artificial General Intelligence , 2016, Lecture Notes in Computer Science.

[9]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[10]  Jürgen Schmidhuber,et al.  Deep learning in neural networks: An overview , 2014, Neural Networks.

[11]  Kristin L. Sainani,et al.  Logistic Regression , 2014, PM & R : the journal of injury, function, and rehabilitation.

[12]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[13]  Arash Bahrammirzaee,et al.  A comparative survey of artificial intelligence applications in finance: artificial neural networks, expert system and hybrid intelligent systems , 2010, Neural Computing and Applications.

[14]  Peter Stone,et al.  Reinforcement learning , 2019, Scholarpedia.

[15]  Marco Scutari,et al.  Learning Bayesian Networks with the bnlearn R Package , 2009, 0908.3817.

[16]  Alessio Farcomeni,et al.  A review of modern multiple hypothesis testing, with particular attention to the false discovery proportion , 2008, Statistical methods in medical research.

[17]  Shane Legg,et al.  Universal Intelligence: A Definition of Machine Intelligence , 2007, Minds and Machines.

[18]  John McCarthy,et al.  A Proposal for the Dartmouth Summer Research Project on Artificial Intelligence, August 31, 1955 , 2006, AI Mag..

[19]  R. Kurzweil,et al.  The Singularity Is Near: When Humans Transcend Biology , 2006 .

[20]  Pei Wang,et al.  Rigid Flexibility: The Logic of Intelligence , 2006 .

[21]  Malik Beshir Malik,et al.  Applied Linear Regression , 2005, Technometrics.

[22]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[23]  Ronald,et al.  Learning representations by backpropagating errors , 2004 .

[24]  Christopher K. I. Williams,et al.  Learning With Kernels: Support Vector Machines, Regularization, Optimization, and Beyond , 2001 .

[25]  Gerhard Lakemeyer,et al.  Exploring artificial intelligence in the new millennium , 2003 .

[26]  Sebastian Thrun,et al.  Robotic mapping: a survey , 2003 .

[27]  Eric R. Ziegel,et al.  Generalized Linear Models , 2002, Technometrics.

[28]  Alexander J. Smola,et al.  Learning with Kernels: support vector machines, regularization, optimization, and beyond , 2001, Adaptive computation and machine learning series.

[29]  Maliha S. Nash,et al.  Handbook of Parametric and Nonparametric Statistical Procedures , 2001, Technometrics.

[30]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[31]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[32]  J. Searle Mind, Language, And Society: Philosophy In The Real World , 1998 .

[33]  B. Frieden,et al.  Physics from Fisher Information: A Unification , 1998 .

[34]  Jürgen Schmidhuber,et al.  Long Short-Term Memory , 1997, Neural Computation.

[35]  Jean-Charles Pomerol,et al.  Artificial intelligence and human decision making , 1997 .

[36]  D. Kleinbaum Survival Analysis: A Self-Learning Text , 1997 .

[37]  Andrew W. Moore,et al.  Reinforcement Learning: A Survey , 1996, J. Artif. Intell. Res..

[38]  Yoav Freund,et al.  A decision-theoretic generalization of on-line learning and an application to boosting , 1997, EuroCOLT.

[39]  Ulrich W. Eisenecker,et al.  AI: The Tumultuous History of the Search for Artificial Intelligence , 1995 .

[40]  Vladimir Vapnik,et al.  The Nature of Statistical Learning , 1995 .

[41]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[42]  R A Brooks,et al.  New Approaches to Robotics , 1991, Science.

[43]  Raymond Kurzweil,et al.  Age of intelligent machines , 1990 .

[44]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1990, Bulletin of mathematical biology.

[45]  Masoud Yazdani,et al.  Building an expert system , 1989 .

[46]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.

[47]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems , 1988 .

[48]  Geoffrey E. Hinton,et al.  Learning representations by back-propagating errors , 1986, Nature.

[49]  Frederick Hayes-Roth,et al.  Building expert systems , 1983, Advanced book program.

[50]  J. W. Humberston Classical mechanics , 1980, Nature.

[51]  Patrick Henry Winston,et al.  Artificial intelligence: an mit perspective , 1979 .

[52]  H. Simon,et al.  Completer Science asEmp rical Inquiry: Symbols and Search , 1976 .

[53]  Herbert A. Simon,et al.  The Sciences of the Artificial , 1970 .

[54]  H. Simon,et al.  The shape of automation for men and management , 1965 .

[55]  Edward A. Feigenbaum,et al.  Artificial intelligence research , 1963, IEEE Trans. Inf. Theory.

[56]  S. Yoshizawa,et al.  An Active Pulse Transmission Line Simulating Nerve Axon , 1962, Proceedings of the IRE.

[57]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1952, The Journal of physiology.

[58]  D.,et al.  Regression Models and Life-Tables , 2022 .