Movement of cysteine in intact monkey lenses: the major site of entry is the germinative region.

[1]  R. Truscott Age-Related Nuclear Cataract: A Lens Transport Problem , 2000, Ophthalmic Research.

[2]  E. Beyer,et al.  Connexin46 mutations linked to congenital cataract show loss of gap junction channel function. , 2000, American journal of physiology. Cell physiology.

[3]  S. Kaushal,et al.  Missense mutations in MIP underlie autosomal dominant ‘polymorphic’ and lamellar cataracts linked to 12q , 2000, Nature Genetics.

[4]  J M Pope,et al.  Age-related changes in the kinetics of water transport in normal human lenses. , 1999, Experimental eye research.

[5]  S. Bhattacharya,et al.  Connexin 50 mutation in a family with congenital "zonular nuclear" pulverulent cataract of Pakistani origin , 1999, Human Genetics.

[6]  O. Weinreb,et al.  Effects of UV-A radiation on lens epithelial NaK-ATPase in organ culture. , 1999, Investigative ophthalmology & visual science.

[7]  R. Truscott,et al.  An impediment to glutathione diffusion in older normal human lenses: a possible precondition for nuclear cataract. , 1998, Experimental eye research.

[8]  N. Gilula,et al.  Disruption of α3 Connexin Gene Leads to Proteolysis and Cataractogenesis in Mice , 1997, Cell.

[9]  M. Lou,et al.  Free cysteine levels in normal human lenses. , 1997, Experimental eye research.

[10]  B. Zlokovic,et al.  Low de novo glutathione synthesis from circulating sulfur amino acids in the lens epithelium. , 1997, Experimental eye research.

[11]  R. Mathias,et al.  Dye Transfer Between Cells of the Lens , 1996, The Journal of Membrane Biology.

[12]  J. Kuszak,et al.  An ultrastructural analysis of the epithelial-fiber interface (EFI) in primate lenses. , 1995, Experimental eye research.

[13]  J. van Marle,et al.  A correlated study of metabolic cell communication and gap junction distribution in the adult frog lens. , 1994, Experimental eye research.

[14]  L. Reinisch,et al.  Intercellular communication between epithelial and fiber cells of the eye lens. , 1994, Journal of cell science.

[15]  H. Ohde,et al.  Size of the lens nucleus separated by hydrodissection. , 1993, Ophthalmic surgery.

[16]  T. D. Duane,et al.  Duane's Clinical Ophthalmology , 1993 .

[17]  W. Dean,et al.  Distribution of lens sodium-potassium-adenosine triphosphatase. , 1993, Investigative ophthalmology & visual science.

[18]  R. Mathias,et al.  Spatial variations in membrane properties in the intact rat lens. , 1992, Biophysical journal.

[19]  D. Goodenough The crystalline lens. A system networked by gap junctional intercellular communication. , 1992, Seminars in cell biology.

[20]  D. Murray,et al.  Age-related cysteine uptake as rate-limiting in glutathione synthesis and glutathione half-life in the cultured human lens. , 1991, Experimental eye research.

[21]  J. J. Harding,et al.  Cataract: Biochemistry, Epidemiology and Pharmacology , 1991 .

[22]  A. Karim,et al.  The human anterior lens capsule: cell density, morphology and mitotic index in normal and cataractous lenses. , 1987, Experimental eye research.

[23]  T. Jacob,et al.  Influence of external calcium and glucose on internal total and ionized calcium in the rat lens. , 1984, The Journal of physiology.

[24]  B. Halliwell,et al.  Superoxide‐dependent formation of hydroxyl radicals from NADH and NADPH in the presence of iron salts , 1982, FEBS letters.

[25]  D. Goodenough,et al.  Lens metabolic cooperation: a study of mouse lens transport and permeability visualized with freeze-substitution autoradiography and electron microscopy , 1980, The Journal of cell biology.

[26]  J. Mcavoy Cell division, cell elongation and distribution of α-, β- and γ-crystallins in the rat lens , 1978 .

[27]  R. Truscott,et al.  The state of sulphydryl groups in normal and cataractous human lenses. , 1977, Experimental eye research.

[28]  R. Truscott,et al.  Oxidative changes in human lens proteins during senile nuclear cataract formation. , 1977, Biochimica et biophysica acta.

[29]  G. Maraini,et al.  Membrane water permeability in normal and cataractous human lenses. , 1975, Experimental eye research.

[30]  V. Reddy,et al.  Transport and metabolism of glutathione in the lens. , 1973, Experimental eye research.

[31]  C. Paterson Extracellular space of the crystalline lens. , 1970, The American journal of physiology.

[32]  R. Truscott,et al.  Major changes in human ocular UV protection with age. , 2001, Investigative ophthalmology & visual science.

[33]  S. Zigman,et al.  Measurement of oxygen production by in vitro human and animal lenses with an oxygen electrode. , 1998, Current eye research.

[34]  R. Mathias,et al.  Physiological properties of the normal lens. , 1997, Physiological reviews.

[35]  J. Kuszak,et al.  The ultrastructure of epithelial and fiber cells in the crystalline lens. , 1995, International review of cytology.

[36]  A. Holleschau,et al.  The effects of age on glutathione synthesis enzymes in lenses of Old World simians and prosimians. , 1992, Current eye research.

[37]  K. Tojo,et al.  Penetration and binding of aldose-reductase inhibitors in the lens. , 1991, Investigative ophthalmology & visual science.

[38]  S. Bassnett,et al.  Diffusion of lactate and its role in determining intracellular pH in the lens of the eye. , 1987, Experimental eye research.

[39]  W. Rathbun Activity of glutathione synthesis enzymes in the rhesus monkey lens related to age: a model for the human lens. , 1986, Current eye research.

[40]  A. Spector Oxidation and cataract. , 1984, Ciba Foundation symposium.