A first look at the Latin American IXPs

We investigated Internet eXchange Points (IXPs) deployed across Latin America. We discovered that many Latin American states have been actively involved in the development of their IXPs. We further found a correlation between the success of a national IXP and the absence of local monopolistic ASes that concentrate the country's IPv4 address space. In particular, three IXPs have been able to gain local traction: IX.br-SP, CABASE-BUE and PIT Chile-SCL. We further compared these larger IXPs with others outside Latin America. We found that, in developing regions, IXPs have had a similar growth in the last years and are mainly populated by regional ASes. The latter point clearly contrasts with more internationally re-known European IXPs whose members span multiple regions.

[1]  Lixin Gao,et al.  Stable Internet routing without global coordination , 2000, SIGMETRICS '00.

[2]  Victor Sanchez-Agüero,et al.  A system for profiling the IXPs in a region and monitoring their growth: Spotlight at the internet frontier , 2019, Int. J. Netw. Manag..

[3]  Amogh Dhamdhere,et al.  Ten years in the evolution of the internet ecosystem , 2008, IMC '08.

[4]  Steve Uhlig,et al.  IP geolocation databases: unreliable? , 2011, CCRV.

[5]  Christian Esteve Rothenberg,et al.  Dissecting the Largest National Ecosystem of Public Internet eXchange Points in Brazil , 2016, PAM.

[6]  Alberto Dainotti,et al.  Lost in Space: Improving Inference of IPv4 Address Space Utilization , 2016, IEEE Journal on Selected Areas in Communications.

[7]  Peng Xie,et al.  Sampling biases in IP topology measurements , 2003, IEEE INFOCOM 2003. Twenty-second Annual Joint Conference of the IEEE Computer and Communications Societies (IEEE Cat. No.03CH37428).

[8]  Amogh Dhamdhere,et al.  Investigating the causes of congestion on the African IXP substrate , 2017, Internet Measurement Conference.

[9]  Amogh Dhamdhere,et al.  The Internet is flat: modeling the transition from a transit hierarchy to a peering mesh , 2010, CoNEXT.

[10]  Sofía Silva Berenguer,et al.  Hidden Internet topologies info: Truth or Myth? , 2016, LANCOMM@SIGCOMM.

[11]  A. Parant [World population prospects]. , 1990, Futuribles.

[12]  Anja Feldmann,et al.  Anatomy of a large european IXP , 2012, SIGCOMM '12.

[13]  C. Martin 2015 , 2015, Les 25 ans de l’OMC: Une rétrospective en photos.

[14]  Anja Feldmann,et al.  A Multi-perspective Analysis of Carrier-Grade NAT Deployment , 2016, Internet Measurement Conference.

[15]  Florence March,et al.  2016 , 2016, Affair of the Heart.

[16]  Pramodita Sharma 2012 , 2013, Les 25 ans de l’OMC: Une rétrospective en photos.

[17]  Pedro Casas,et al.  Looking for Network Latency Clusters in the LAC Region , 2016, LANCOMM@SIGCOMM.

[18]  Vasileios Giotsas,et al.  IPv6 AS Relationships, Cliques, and Congruence , 2015, PAM.

[19]  Brice Augustin,et al.  IXPs: mapped? , 2009, IMC '09.

[20]  S. Rhoades The Herfindahl-Hirschman index , 1993 .

[21]  Almerima Jamakovic,et al.  Mixing Biases: Structural Changes in the AS Topology Evolution , 2010, TMA.

[22]  Peyman Faratin,et al.  Economics of Overlay Networks: An Industrial Organization Perspective on Network Economics , 2007 .

[23]  Emile Aben,et al.  On the Diversity of Interdomain Routing in Africa , 2015, PAM.

[24]  Anja Feldmann,et al.  There is more to IXPs than meets the eye , 2013, CCRV.

[25]  Hernan Galperin Localizing Internet infrastructure: Cooperative peering in Latin America , 2016, Telematics Informatics.