Fat Triangulations and Differential Geometry

We study the differential geometric consequences of our previous result on the existence of fat triangulations, in conjunction with a result of Cheeger, M\"{u}ller and Schrader, regarding the convergence of Lipschitz-Killing curvatures of piecewise-flat approximations of smooth Riemannian manifolds. A further application to the existence of quasiconformal mappings between manifolds, as well as an extension of the triangulation result to the case of almost Riemannian manifolds, are also given. In addition, the notion of fatness of triangulations and its relation to metric curvature and to excess is explored. Moreover, applications of the main results, and in particular a purely metric approach to Regge calculus, are also investigated.

[1]  S. Semmes,et al.  Finding curves on general spaces through quantitative topology, with applications to Sobolev and Poincaré inequalities , 1996 .

[2]  Benjamin Bahr,et al.  Regge calculus from a new angle , 2009, 0907.4325.

[3]  Preface A Panoramic View of Riemannian Geometry , 2003 .

[4]  Marshall W. Bern,et al.  Surface Reconstruction by Voronoi Filtering , 1998, SCG '98.

[5]  Robert Schrader,et al.  On the curvature of piecewise flat spaces , 1984 .

[6]  M. Gromov Metric Structures for Riemannian and Non-Riemannian Spaces , 1999 .

[7]  Emil Saucan Note on a Theorem of Munkres , 2004 .

[8]  T. O’Neil Geometric Measure Theory , 2002 .

[9]  Gershon Elber,et al.  Curvature Estimation over Smooth Polygonal Meshes Using the Half Tube Formula , 2007, IMA Conference on the Mathematics of Surfaces.

[10]  Joachim Giesen Curve reconstruction, the traveling salesman problem and Menger's theorem on length , 1999, SCG '99.

[11]  J. Fu,et al.  Convergence of curvatures in secant approximations , 1993 .

[12]  Emil Saucan,et al.  THE EXISTENCE OF THICK TRIANGULATIONS - AN "ELEMENTARY" PROOF , 2008, 0812.0456.

[13]  J. Munkres,et al.  Elementary Differential Topology. , 1967 .

[14]  Rafael D. Sorkin,et al.  The electromagnetic field on a simplicial net , 1975 .

[15]  J. Cheeger,et al.  Lattice gravity or Riemannian structure on piecewise linear spaces , 1982 .

[16]  Seppo Rickman,et al.  Existence of quasiregular mappings , 1988 .

[17]  Yehoshua Y. Zeevi,et al.  Local versus Global in Quasi-Conformal Mapping for Medical Imaging , 2008, Journal of Mathematical Imaging and Vision.

[18]  Gilad Lerman,et al.  High-Dimensional Menger-Type Curvatures—Part II: d-Separation and a Menagerie of Curvatures , 2008, 0809.0137.

[19]  C. B. Allendoerfer,et al.  The Gauss-Bonnet theorem for Riemannian polyhedra , 1943 .

[20]  Y. Otsu,et al.  The Riemannian structure of Alexandrov spaces , 1994 .

[21]  Hervé Pajot,et al.  Analytic capacity, rectifiability, Menger curvature and the Cauchy integral , 2002 .

[22]  Emil Saucan,et al.  Metric Methods in Surface Triangulation , 2009, IMA Conference on the Mathematics of Surfaces.

[23]  Xavier Tolsa,et al.  ON THE ANALYTIC CAPACITY γ+ , 2003 .

[24]  Simon L. Kokkendorff,et al.  Polar duality and the generalized Law of Sines , 2007 .

[25]  Gershon Elber,et al.  Global segmentation and curvature analysis of volumetric data sets using trivariate B-spline functions , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[26]  Shunhui Zhu,et al.  The Comparison Geometry of Ricci Curvature , 1997 .

[27]  Emil Saucan,et al.  On the properties of the combinatorial Ricci flow for surfaces , 2011, ArXiv.

[28]  David C. Kay,et al.  Arc curvature in metric spaces , 1980 .

[29]  大津 幸男 On manifolds of small excess , 1993 .

[30]  T. Regge General relativity without coordinates , 1961 .

[31]  Robert Schrader,et al.  Kinematic and tube formulas for piecewise linear spaces , 1986 .

[32]  Bianca Dittrich,et al.  Area–angle variables for general relativity , 2008, 0802.0864.

[33]  Emil Saucan The Existence of Quasimeromorphic Mappings , 2004 .

[34]  Michel Rappaz,et al.  Orientation selection in dendritic evolution , 2006, Nature materials.

[35]  I. Kuntz,et al.  Distance geometry. , 1989, Methods in enzymology.

[36]  G. Lerman,et al.  High-Dimensional Menger-Type Curvatures - Part I: Geometric Multipoles and Multiscale Inequalities , 2008, 0805.1425.

[37]  S. S. Cairns On the Triangulation of Regular Loci , 1934 .

[38]  Gershon Elber,et al.  A comparison of Gaussian and mean curvatures estimation methods on triangular meshes , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[39]  Shing-Tung Yau,et al.  Geometric Accuracy Analysis for Discrete Surface Approximation , 2006, GMP.

[40]  Emil Saucan,et al.  Curvature based triangulation of metric measure spaces , 2010, ArXiv.

[41]  L. M. Blumenthal,et al.  Studies in geometry , 1972 .

[42]  Brian T. Smith Black hole initial data with a horizon of prescribed intrinsic and extrinsic geometry , 2009, 0912.5015.

[43]  Shi-Min Hu,et al.  Principal curvatures from the integral invariant viewpoint , 2007, Comput. Aided Geom. Des..

[44]  R. R. Martin Estimation of Principal curvatures from Range Data , 1998, Int. J. Shape Model..

[45]  Yehoshua Y. Zeevi,et al.  Sampling and Reconstruction of Surfaces and Higher Dimensional Manifolds , 2008, Journal of Mathematical Imaging and Vision.

[46]  Tullio Regge,et al.  Discrete structures in gravity , 2000 .

[47]  Emil Saucan The Existence of Quasimeromorphic Mappings in Dimension 3 , 2003 .

[48]  Martina Zähle,et al.  Integral and current representation of Federer's curvature measures , 1986 .

[49]  Herbert Edelsbrunner,et al.  Geometry and Topology for Mesh Generation , 2001, Cambridge monographs on applied and computational mathematics.

[50]  Emil Saucan,et al.  INTRINSIC DIFFERENTIAL GEOMETRY AND THE EXISTENCE OF QUASIMEROMORPHIC MAPPINGS , 2008, 0901.0125.

[51]  Xianfeng Gu,et al.  Parametrization for surfaces with arbitrary topologies , 2003 .

[52]  Yehoshua Y. Zeevi,et al.  Combinatorial Ricci Curvature and Laplacians for Image Processing , 2009, 2009 2nd International Congress on Image and Signal Processing.

[53]  Arcwise Isometries,et al.  A Course in Metric Geometry , 2001 .

[54]  Y. Zeevi,et al.  Image Projection and Representation on Sn , 2007 .