Flexible and ion-conducting membrane electrolytes for solid-state lithium batteries: Dispersion of garnet nanoparticles in insulating polyethylene oxide

Abstract Solid-state electrolytes with high ionic conductivity, large electrochemical window, good mechanical properties, and easy processability are needed for high-energy solid-state lithium batteries. In this work, composite membranes consisting of lithium garnet (i.e. Li6.4La3Zr1.4Ta0.6O12, LLZTO) particles and Li-salt-free polyethylene oxides (PEOs) are produced as solid-state electrolytes. Li-ion-conducting particles in nano-scale are crucial for the enhancement of conductivity and the membranes containing ~40 nm LLZTO particles exhibit conductivities nearly two orders of magnitude larger than those with the micro-scale ones, which is attributed to the difference in specific surface area related to the percolation effect. Compared to the conventional PEO doped with lithium salt, the insulating PEO in PEO:LLZTO membrane electrolyte is conducive to the suppression of lithium dendrite growth owing to prohibition of current flow. With PEO:LLZTO membrane electrolytes in conductivity of 2.1×10−4 S cm−1 at 30 °C and 5.6×10−4 S cm−1 at 60 °C, the solid-state LiFePO4/PEO:LLZTO/Li and LiFe0.15Mn0.85PO4/PEO:LLZTO/Li cells deliver energy densities of 345 Wh kg−1 (662 Wh L−1) and 405 Wh kg−1 (700 Wh L−1) (without the package weight or volume) with good rate capability and cycling performance. This study suggests that the conjunction of nano-scale Li-ion-conducting particles and an insulating polymer provides a promising solution to produce powerful solid-state electrolytes for high-performance solid-state lithium batteries.

[1]  Wei Liu,et al.  Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers. , 2015, Nano letters.

[2]  A. J. Bhattacharyya,et al.  Extremely High Silver Ionic Conductivity in Composites of Silver Halide (AgBr, AgI) and Mesoporous Alumina , 2006 .

[3]  Lynden A. Archer,et al.  A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles , 2015, Nature Communications.

[4]  C. Fisher,et al.  Lithium and sodium battery cathode materials: computational insights into voltage, diffusion and nanostructural properties. , 2014, Chemical Society reviews.

[5]  Piercarlo Mustarelli,et al.  PEO-based composite polymer electrolytes , 1998 .

[6]  J. R. Stevens,et al.  Composite Polyether Electrolytes with Lewis Acid Type Additives , 1998 .

[7]  Xin-Bing Cheng,et al.  Dendrite‐Free Lithium Deposition Induced by Uniformly Distributed Lithium Ions for Efficient Lithium Metal Batteries , 2016, Advanced materials.

[8]  Donald J. Siegel,et al.  Elastic Properties of the Solid Electrolyte Li7La3Zr2O12 (LLZO) , 2016 .

[9]  Xiaoen Wang,et al.  Microporous polymer electrolyte based on PVDF/PEO star polymer blends for lithium ion batteries , 2015 .

[10]  Zheng Wang,et al.  Densification and ionic-conduction improvement of lithium garnet solid electrolytes by flowing oxygen sintering , 2014 .

[11]  Xiaoxiong Xu,et al.  Lithium Superionic Conducting Oxysulfide Solid Electrolyte with Excellent Stability against Lithium Metal for All-Solid-State Cells , 2016 .

[12]  Yang Shen,et al.  Direct observation of lithium dendrites inside garnet-type lithium-ion solid electrolyte , 2015 .

[13]  Joachim Maier,et al.  Second Phase Effects on the Conductivity of Non‐Aqueous Salt Solutions: “Soggy Sand Electrolytes” , 2004 .

[14]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[15]  Jeffrey W. Fergus,et al.  Ceramic and polymeric solid electrolytes for lithium-ion batteries , 2010 .

[16]  Wei Liu,et al.  High Ionic Conductivity of Composite Solid Polymer Electrolyte via In Situ Synthesis of Monodispersed SiO2 Nanospheres in Poly(ethylene oxide). , 2016, Nano letters.

[17]  Joachim Maier,et al.  Ionic conduction in space charge regions , 1995 .

[18]  B. Scrosati,et al.  The lithium polymer electrolyte battery V. The roles of the composition and morphology of the positive electrode , 1990 .

[19]  Yue Deng,et al.  Structural and Mechanistic Insights into Fast Lithium-Ion Conduction in Li4SiO4-Li3PO4 Solid Electrolytes. , 2015, Journal of the American Chemical Society.

[20]  P. Reschiglian,et al.  Determination of particle size distribution by gravitational field-flow fractionation: Dimensional characterization of silica particles , 1995 .

[21]  T. Yoshida,et al.  Compatibility of Li7La3Zr2O12 Solid Electrolyte to All-Solid-State Battery Using Li Metal Anode , 2010 .

[22]  Karim Zaghib,et al.  New lithium metal polymer solid state battery for an ultrahigh energy: nano C-LiFePO₄ versus nano Li1.2V₃O₈. , 2015, Nano letters.

[23]  Asma Sharafi,et al.  Characterizing the Li–Li7La3Zr2O12 interface stability and kinetics as a function of temperature and current density , 2016 .

[24]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[25]  Satoshi Hori,et al.  High-power all-solid-state batteries using sulfide superionic conductors , 2016, Nature Energy.

[26]  C. Nan Physics of inhomogeneous inorganic materials , 1993 .

[27]  Arumugam Manthiram,et al.  Hybrid and Aqueous Lithium‐Air Batteries , 2015 .

[28]  John B. Goodenough,et al.  Review—Solid Electrolytes in Rechargeable Electrochemical Cells , 2015 .

[29]  Xinhong Zhou,et al.  Safety‐Reinforced Poly(Propylene Carbonate)‐Based All‐Solid‐State Polymer Electrolyte for Ambient‐Temperature Solid Polymer Lithium Batteries , 2015 .

[30]  Kwang Man Kim,et al.  Synergistic multi-doping effects on the Li7La3Zr2O12 solid electrolyte for fast lithium ion conduction , 2015, Scientific Reports.

[31]  M. Armand,et al.  Building better batteries , 2008, Nature.

[32]  M. Osada,et al.  Enhancement of the High‐Rate Capability of Solid‐State Lithium Batteries by Nanoscale Interfacial Modification , 2006 .

[33]  Yuki Kato,et al.  A lithium superionic conductor. , 2011, Nature materials.

[34]  J. Sakamoto,et al.  Room temperature elastic moduli and Vickers hardness of hot-pressed LLZO cubic garnet , 2012, Journal of Materials Science.

[35]  Philippe Knauth,et al.  Inorganic solid Li ion conductors: An overview , 2009 .

[36]  Ning Zhao,et al.  All solid state lithium batteries based on lamellar garnet-type ceramic electrolytes , 2015 .

[37]  Bruno Scrosati,et al.  Composite Polymer Electrolytes , 1991 .

[38]  Shyue Ping Ong,et al.  Rational Composition Optimization of the Lithium-Rich Li3OCl1–xBrx Anti-Perovskite Superionic Conductors , 2015 .

[39]  Kazunori Takada,et al.  Progress and prospective of solid-state lithium batteries , 2013 .

[40]  Yang Shen,et al.  Physical Properties of Composites Near Percolation , 2010 .

[41]  S. Dou,et al.  Nanoparticle-dispersed PEO polymer electrolytes for Li batteries , 2003 .

[42]  Lei Cheng,et al.  Interrelationships among Grain Size, Surface Composition, Air Stability, and Interfacial Resistance of Al-Substituted Li7La3Zr2O12 Solid Electrolytes. , 2015, ACS applied materials & interfaces.

[43]  K. Abraham,et al.  Highly Conductive PEO-like Polymer Electrolytes , 1997 .

[44]  G. Adachi,et al.  Fast Li⊕ Conducting Ceramic Electrolytes , 1996 .