Approaching the upper limits of the local density of states via optimized metallic cavities.

By computational optimization of air-void cavities in metallic substrates, we show that the local density of states (LDOS) can reach within a factor of ≈10 of recent theoretical upper limits and within a factor ≈4 for the single-polarization LDOS, demonstrating that the theoretical limits are nearly attainable. Optimizing the total LDOS results in a spontaneous symmetry breaking where it is preferable to couple to a specific polarization. Moreover, simple shapes such as optimized cylinders attain nearly the performance of complicated many-parameter optima, suggesting that only one or two key parameters matter in order to approach the theoretical LDOS bounds for metallic resonators.

[1]  Pablo A. Iglesias,et al.  Algorithms for Linear-Quadratic Optimization , 2021 .

[2]  O. Miller,et al.  Maximal single-frequency electromagnetic response , 2020, Optica.

[3]  M. Gustafsson,et al.  Upper bounds on absorption and scattering , 2019, New Journal of Physics.

[4]  Steven G. Johnson,et al.  Inverse design of nanoparticles for enhanced Raman scattering. , 2019, Optics express.

[5]  Steven G. Johnson,et al.  Limits to surface-enhanced Raman scattering near arbitrary-shape scatterers , 2019, NanoScience + Engineering.

[6]  S. Molesky,et al.  Fundamental limits to radiative heat transfer: Theory , 2019, Physical Review B.

[7]  Jesper Mørk,et al.  Maximizing the quality factor to mode volume ratio for ultra-small photonic crystal cavities , 2018, Applied Physics Letters.

[8]  Steven G. Johnson,et al.  Fundamental Limits to Near-Field Optical Response over Any Bandwidth , 2018, Physical Review X.

[9]  Jelena Vucković,et al.  Inverse design in nanophotonics , 2018, Nature Photonics.

[10]  Steven G. Johnson,et al.  Limits to the Optical Response of Graphene and Two-Dimensional Materials. , 2017, Nano letters.

[11]  Andrea Alù,et al.  Modifying magnetic dipole spontaneous emission with nanophotonic structures , 2017 .

[12]  Steven G. Johnson,et al.  Fundamental limits to optical response in absorptive systems. , 2015, Optics express.

[13]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[14]  N. Mortensen,et al.  Nonlocal optical response in metallic nanostructures , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[15]  Steven G. Johnson,et al.  Fundamental limits to extinction by metallic nanoparticles. , 2014, Physical review letters.

[16]  Steven G. Johnson,et al.  Formulation for scalable optimization of microcavities via the frequency-averaged local density of states. , 2013, Optics express.

[17]  V. Sih,et al.  Optimizing nanophotonic cavity designs with the gravitational search algorithm. , 2013, Optics express.

[18]  Kurt Maute,et al.  Level-set methods for structural topology optimization: a review , 2013 .

[19]  Mario Agio,et al.  Nano-optics: The Purcell factor of nanoresonators , 2013 .

[20]  O. Miller Photonic Design: From Fundamental Solar Cell Physics to Computational Inverse Design , 2013, 1308.0212.

[21]  Steven G. Johnson,et al.  Efficient Computation of Power, Force, and Torque in BEM Scattering Calculations , 2013, IEEE Transactions on Antennas and Propagation.

[22]  Steven G. Johnson,et al.  Electromagnetic Wave Source Conditions , 2013, 1301.5366.

[23]  O. Sigmund,et al.  Topology optimization for nano‐photonics , 2011 .

[24]  A. Polman,et al.  Broadband Purcell enhancement in plasmonic ring cavities , 2010 .

[25]  Shanhui Fan,et al.  Superscattering of light from subwavelength nanostructures. , 2010, Physical review letters.

[26]  Marin Soljacic,et al.  Coupled-mode theory for general free-space resonant scattering of waves , 2007 .

[27]  Jeremy J. Baumberg,et al.  Localized and delocalized plasmons in metallic nanovoids , 2006 .

[28]  Steve Oudot,et al.  Provably good sampling and meshing of surfaces , 2005, Graph. Model..

[29]  R. Carminati,et al.  Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and Casimir forces revisited in the near field , 2005, physics/0504068.

[30]  Shanhui Fan,et al.  Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities , 2004 .

[31]  Michael Scalora,et al.  Electromagnetic density of modes for a finite-size three-dimensional structure. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[32]  R. Carminati,et al.  Definition and measurement of the local density of electromagnetic states close to an interface , 2003, InternationalQuantum Electronics Conference, 2004. (IQEC)..

[33]  Ronald Fedkiw,et al.  Level set methods and dynamic implicit surfaces , 2002, Applied mathematical sciences.

[34]  A. Scherer,et al.  Optimization of Three-Dimensional Micropost Microcavities for Cavity Quantum Electrodynamics , 2002, quant-ph/0208134.

[35]  Luís N. Vicente,et al.  Analysis of Inexact Trust-Region SQP Algorithms , 2002, SIAM J. Optim..

[36]  Reginald K. Lee,et al.  Quantum analysis and the classical analysis of spontaneous emission in a microcavity , 2000 .

[37]  Olivier J. F. Martin,et al.  Electromagnetic scattering in polarizable backgrounds , 1998 .

[38]  J. Pendry,et al.  Green's functions for Maxwell's equations: application to spontaneous emission , 1997 .

[39]  D. Tortorelli,et al.  Design sensitivity analysis: Overview and review , 1994 .

[40]  L. Lasdon,et al.  Nonlinear Optimization by Successive Linear Programming , 1982 .

[41]  H. Fallah,et al.  Application of LDOS and multipole expansion technique in optimization of photonic crystal designs , 2013 .

[42]  Shanhui Fan,et al.  Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities , 2004, IEEE Journal of Quantum Electronics.

[43]  D. Lynch,et al.  Handbook of Optical Constants of Solids , 1985 .

[44]  P. K. Banerjee,et al.  Boundary element methods in engineering science , 1981 .