Robust Parameter Estimation of Nonlinear Systems Using Sliding-Mode Differentiator Observer

This paper presents the design, simulation, and experimental results of a new scheme for the robust parameter estimation of uncertain nonlinear dynamic systems. The technique is established on the estimation of robust time derivatives using a variable-structure differentiator observer. A second-order sliding motion is established along designed sliding manifolds to estimate the time derivatives of flat outputs and inputs, leading to better tracking performance of estimates during transients. The parameter convergence and accuracy analysis is rigorously explored systematically for the proposed class of estimators. The proposed method is validated using two case studies; first, the parameters of an uncertain nonlinear system with known, but uncertain nominal parametric values are estimated to demonstrate the convergence, accuracy, and robustness of the scheme; in the second application, the experimental parameter estimation of an onboard-diagnosis-II-compliant automotive vehicle engine is presented. The estimated parameters of the automotive engine are used to tune the theoretical mean value engine model having inaccuracies due to modeling errors and approximation assumptions. The resulting dynamics of the tuned engine model matches exactly with experimental engine data, verifying the accuracy of the estimates.

[1]  Vadim I. Utkin,et al.  Simultaneous State and Parameter Estimation in Induction Motors Using First- and Second-Order Sliding Modes , 2009, IEEE Transactions on Industrial Electronics.

[2]  J. Guzinski,et al.  Application of speed and load torque observers in high speed train , 2008, 2008 13th International Power Electronics and Motion Control Conference.

[3]  Cédric Join,et al.  CONTROL OF AN UNCERTAIN THREE-TANK SYSTEM VIA ON-LINE PARAMETER IDENTIFICATION AND FAULT DETECTION , 2005 .

[4]  Sunil K. Agrawal,et al.  Differentially Flat Systems , 2004 .

[5]  Yacine Chitour,et al.  Time-varying high-gain observers for numerical differentiation , 2002, IEEE Trans. Autom. Control..

[6]  Ali Keyhani,et al.  Sliding-Mode Flux Observer With Online Rotor Parameter Estimation for Induction Motors , 2007, IEEE Transactions on Industrial Electronics.

[7]  Iqbal Husain,et al.  Online Parameter Estimation and Adaptive Control of Permanent-Magnet Synchronous Machines , 2010, IEEE Transactions on Industrial Electronics.

[8]  Aamer I. Bhatti,et al.  Estimation of Gasoline-Engine Parameters Using Higher Order Sliding Mode , 2008, IEEE Transactions on Industrial Electronics.

[9]  Mohamed S. Zaky,et al.  Wide-Speed-Range Estimation With Online Parameter Identification Schemes of Sensorless Induction Motor Drives , 2009, IEEE Transactions on Industrial Electronics.

[10]  Arie Levant,et al.  Higher-order sliding modes, differentiation and output-feedback control , 2003 .

[11]  Katsuhisa Furuta,et al.  Frequency characteristics of Levant's differentiator and adaptive sliding mode differentiator , 2007 .

[12]  Ilya V. Kolmanovsky,et al.  Adaptive Kalman Filter-Based Load Torque Compensator for Improved SI Engine Idle Speed Control , 2009, IEEE Transactions on Control Systems Technology.

[13]  Tao Jiang,et al.  Parameter Estimation-Based Fault Detection, Isolation and Recovery for Nonlinear Satellite Models , 2008, IEEE Transactions on Control Systems Technology.

[14]  E.J.P. Rutten,et al.  Mean value modeling of spark ignition engines , 1993 .

[15]  Sarah K. Spurgeon,et al.  Sliding mode observers: a survey , 2008, Int. J. Syst. Sci..

[16]  Christian Bohn Recursive parameter estimation for nonlinear continuous time systems through sensitivity model based adaptive filters , 2000 .

[17]  Jeff K. Pieper,et al.  Air/fuel ratio control using sliding mode methods , 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).

[18]  Syh-Shiuh Yeh,et al.  Precision Control and Compensation of Servomotors and Machine Tools via the Disturbance Observer , 2010, IEEE Transactions on Industrial Electronics.

[19]  Shouchuan Hu Differential equations with discontinuous right-hand sides☆ , 1991 .

[20]  Kim-Fung Man,et al.  A Comparison of Optimization Algorithms for Biological Neural Network Identification , 2010, IEEE Transactions on Industrial Electronics.

[21]  John J. Moskwa,et al.  Engine load torque estimation using nonlinear observers , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[22]  Alessandro Pisano,et al.  Frequency characteristics of Levant's differentiator and adaptive sliding mode differentiator , 2007, Int. J. Syst. Sci..

[23]  Michael Defoort,et al.  A Third-Order Sliding-Mode Controller for a Stepper Motor , 2009, IEEE Transactions on Industrial Electronics.

[24]  Vadim I. Utkin,et al.  Automotive engine diagnosis and control via nonlinear estimation , 1998 .

[25]  John B. Heywood,et al.  Internal combustion engine fundamentals , 1988 .

[26]  A. Levant Robust exact differentiation via sliding mode technique , 1998 .

[27]  A. I. Bhatti,et al.  Parameter estimation of uncertain nonlinear MIMO three tank systems using higher order sliding modes , 2009, 2009 IEEE International Conference on Control and Automation.

[28]  Yi-Sheng Huang,et al.  Function-Based Controller for Linear Motor Control Systems , 2010, IEEE Transactions on Industrial Electronics.

[29]  Halim Alwi,et al.  Fault Detection and Fault-Tolerant Control of a Civil Aircraft Using a Sliding-Mode-Based Scheme , 2008, IEEE Transactions on Control Systems Technology.

[30]  Arie Levant,et al.  Exact Differentiation of Signals with Unbounded Higher Derivatives , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[31]  Jafar Soltani,et al.  Adaptive Nonlinear Direct Torque Control of Sensorless IM Drives With Efficiency Optimization , 2010, IEEE Transactions on Industrial Electronics.

[32]  Hassan K. Khalil,et al.  High-gain observers in the presence of measurement noise: A nonlinear gain approach , 2008, 2008 47th IEEE Conference on Decision and Control.