Rare-earth ion doped TeO2 and GeO2 glasses as laser materials

Abstract Germanium oxide (GeO 2 ) and tellurium oxide (TeO 2 ) based glasses are classed as the heavy metal oxide glasses, with phonon energies ranging between 740 cm −1 and 880 cm −1 . These two types of glasses exhibit unique combinations of optical and spectroscopic properties, together with their attractive environmental resistance and mechanical properties. Engineering such a combination of structural, optical and spectroscopic properties is only feasible as a result of structural variability in these two types of glasses, since more than one structural units (TeO 4 bi-pyramid, TeO 3 trigonal pyramid, and TeO 3+ δ polyhedra) in tellurite and (GeO 4 tetrahedron, GeO 3 octahedron) in GeO 2 based glasses may exist, depending on composition. The presence of multiple structural moities creates a range of dipole environments which is ideal for engineering broad spectral bandwidth rare-earth ion doped photonic device materials, suitable for laser and amplifier devices. Tellurite glasses were discovered in 1952, but remained virtually unknown to materials and device engineers until 1994 when unusual spectroscopic, nonlinear and dispersion properties of alkali and alkaline earth modified tellurite glasses and fibres were reported. Detailed spectroscopic analysis of Pr 3+ , Nd 3+ , Er 3+ , and Tm 3+ doped tellurite glasses revealed its potential for laser and amplifier devices for optical communication wavelengths. This review summarises the thermal and viscosity properties of tellurite and germanate glasses for fibre fabrication and compares the linear loss for near and mid-IR device engineering. The aspects of glass preform fabrication for fibre engineering is discussed by emphasising the raw materials processing with casting of preforms and fibre fabrication. The spectroscopic properties of tellurite and germanate glasses have been analysed with special emphasis on oscillator strength and radiative rate characteristics for visible, near IR and mid-IR emission. The review also compares the latest results in the engineering of lasers and amplifiers, based on fibres for optical communication and mid-IR. The achievements in the areas of near-IR waveguide and mid-IR bulk glass, fibre, and waveguide lasers are discussed. The latest landmark results in mode-locked 2 μm bulk glass lasers sets the precedence for engineering nonlinear and other laser devices for accessing the inaccessible parts of the mid-IR spectrum and discovering new applications for the future.

[1]  Nasser Peyghambarian,et al.  Fiber-taper-coupled L-band Er3+-doped tellurite glass microsphere laser , 2003 .

[2]  Animesh Jha,et al.  GaInNAs semiconductor disk lasers as pump sources for Tm3+ (,Ho3+ )-doped glass, crystal and fibre lasers , 2009, LASE.

[3]  M Cronin-Golomb,et al.  Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs. , 2008, Optics express.

[4]  Renata Reisfeld,et al.  Optical transitions of Sm3+ in oxide glasses , 1979 .

[5]  J. Zwanziger,et al.  Crystal structure and sodium environments in sodium tetratellurite, Na2Te4O9, and sodium tellurite, Na2TeO3, by X-ray crystallography and sodium-23 NMR , 1994 .

[6]  Kazuhiro Yamada,et al.  Visible emission characteristics in Tb3+-doped fluorescent glasses under selective excitation , 1996 .

[7]  B. C. Jamalaiah,et al.  A study on fluorescence properties of Eu3+ ions in alkali lead tellurofluoroborate glasses , 2010 .

[8]  Gin Jose,et al.  Erbium doped phospho-tellurite glasses for 1.5 μm optical amplifiers , 2006 .

[9]  G. Agrawal,et al.  Broadly tunable femtosecond parametric oscillator using a photonic crystal fiber. , 2005, Optics letters.

[10]  J. Scott Raman Spectra of GeO2 , 1970 .

[11]  Wancheng Zhou,et al.  A new crystalline phase (Na2O·8TeO2) in the Na2O-TeO2 system , 2001 .

[12]  C. César,et al.  Planar waveguides by ion exchange in Er3+-doped tellurite glass , 2006 .

[13]  Kazuaki Yoshida,et al.  Loss factors in optical fibres , 1981 .

[14]  G. Sigel,et al.  Spectroscopic Analysis of the Structure and Properties of Alkali Tellurite Glasses , 1992 .

[15]  A Mori,et al.  Gain characteristics of tellurite-based erbium-doped fiber amplifiers for 1.5-microm broadband amplification. , 1998, Optics letters.

[16]  Jens Limpert,et al.  The renaissance and bright future of fibre lasers , 2005 .

[17]  Edwin Yue-Bun Pun,et al.  Tellurite glasses for 1.3 μm optical amplifiers , 1999 .

[18]  J. Dudley,et al.  Supercontinuum generation in photonic crystal fiber , 2006 .

[19]  W. J. Chung,et al.  Visible emissions at 592 and 613 nm in Er3 , 2004 .

[20]  W. Shubin,et al.  Study of photochemical fluorescence enhancement of the terbium-lomefloxacin complex , 1999 .

[21]  Esther Lense,et al.  Chemistry of Glass , 1985, Encyclopedia of Glass Science, Technology, History, and Culture.

[22]  K. Vahala Optical microcavities : Photonic technologies , 2003 .

[23]  A. J. Bruce,et al.  The influence of glass composition on the crystal growth kinetics of heavy metal fluoride glasses , 1985 .

[24]  B. Judd,et al.  OPTICAL ABSORPTION INTENSITIES OF RARE-EARTH IONS , 1962 .

[25]  Shayne Bennetts,et al.  High-power 83 W holmium-doped silica fiber laser operating with high beam quality. , 2007, Optics letters.

[26]  R. Reisfeld,et al.  Quantum yield of Ce3+ and energy transfer between Ce3+ and Tb3+ in borax glasses☆ , 1975 .

[27]  F. M. Ernsberger,et al.  Molecular Water in Glass , 1977 .

[28]  R. Wyatt,et al.  Spectroscopy Of Rare Earth Doped Fibres , 1990, Other Conferences.

[29]  Animesh Jha,et al.  Nonlinear optical properties of chalcogenide glasses: Observation of multiphoton absorption , 2001 .

[30]  S. Debbarma,et al.  Femtosecond laser written channel waveguides in tellurite glass. , 2006, Optics express.

[31]  Jianji Dong,et al.  Dual-Pumped Tellurite Fiber Amplifier and Tunable Laser Using Er$^{3+}$ /Ce$^{3+}$ Codoping Scheme , 2011, IEEE Photonics Technology Letters.

[32]  T. Sekiya,et al.  Raman spectra of BO32TeO2 glasses , 1992 .

[33]  Shibin Jiang,et al.  Infrared and visible fluorescence in Er3+-doped gallium tellurite glasses , 2004 .

[34]  S. Rai,et al.  UV–visible emission in Tb–Yb codoped tellurite glass on 980-nm excitation , 2007 .

[35]  Temperature dependence of the wavelength and threshold of fiber-taper-coupled L-band Er3+-doped tellurite glass microsphere laser , 2003 .

[36]  Peter A. Andrekson,et al.  Fiber-based optical parametric amplifiers and their applications , 2002 .

[37]  P. Russell,et al.  Tellurite photonic crystal fiber. , 2003, Optics express.

[38]  Animesh Jha,et al.  Tungsten–tellurite—a host glass for broadband EDFA , 2002 .

[39]  G. S. Ofelt Intensities of Crystal Spectra of Rare‐Earth Ions , 1962 .

[40]  W. Sibbett,et al.  Laser operation of a bulk Tm3+: Germanate glass laser around 2 µm with 50 % internal slope efficiency , 2009, 2009 IEEE LEOS Annual Meeting Conference Proceedings.

[41]  Yasutake Ohishi,et al.  Erbium-doped tellurite glass fibre laser and amplifier , 1997 .

[42]  Qianhuan Zhang,et al.  Effect of Ce3+, Dy3+, and Tb3+ additions on the spectroscopic properties of Er3+/Yb3+ codoped tellurite glasses , 2010 .

[43]  A. Jha,et al.  Er3+-doped boro-tellurite glass for optical amplification in the 1530–1580nm , 2008 .

[44]  Yong Gyu Choi,et al.  Comparative study of energy transfers from Er3+ to Ce3+ in tellurite and sulfide glasses under 980 nm excitation , 2000 .

[45]  Heike Ebendorff-Heidepriem,et al.  Highly nonlinear and anomalously dispersive lead silicate glass holey fibers. , 2003, Optics express.

[46]  Y. Nishida,et al.  Gain-flattened tellurite-based EDFA with a flat amplification bandwidth of 76 nm , 1998, IEEE Photonics Technology Letters.

[47]  W Sibbett,et al.  Lasing action at around 1.9 μm from an ultrafast laser inscribed Tm-doped glass waveguide. , 2011, Optics letters.

[48]  A. Jha,et al.  Spectroscopic properties of Sm3+-doped oxide and fluoride glasses for efficient visible lasers (560–660 nm) , 2008 .

[49]  T. Yoko,et al.  Waveguide formation in niobium tellurite glasses by pico- and femtosecond laser pulses , 2003 .

[50]  H. Takara,et al.  3 Tbit/s (160 Gbit/s/spl times/19 channel) optical TDM and WDM transmission experiment , 1999 .

[51]  Animesh Jha,et al.  Thermal sensitivity of tellurite and germanate optical fibers. , 2007, Optics express.

[52]  A. Marques,et al.  Vibrational spectra and structure of alkali germanate glasses , 2001 .

[53]  A. Jha,et al.  Investigation on the kinetics of devitrification of GeS_2-based glasses , 2005 .

[54]  A. Polman,et al.  Ultrasmall mode volume plasmonic nanodisk resonators. , 2010, Nano letters (Print).

[55]  T. Sekiya,et al.  Raman spectra of binary tellurite glasses containing tri- or tetra-valent cations , 1995 .

[56]  Q. Nie,et al.  Effect of Ce3+ on the spectroscopic properties in Er3+ doped TeO2–GeO2–Nb2O5–Li2O glasses , 2007 .

[57]  W. Miniscalco,et al.  Optical and Electronic Properties of Rare Earth Ions in Glasses , 2001 .

[58]  T. Sekiya,et al.  Normal Vibrations of Two Polymorphic forms of TeO2 Crystals and Assignments of Raman Peaks of Pure TeO2 Glass , 1989 .

[59]  A. Jha,et al.  Nd3+-doped fluoroaluminate glasses for a 1.3 μm amplifier , 2000 .

[60]  I. R. Martín,et al.  Optical properties and cross relaxation among Sm3+ ions in fluorzincate glasses , 1992 .

[61]  J. F. Massicott,et al.  High gain, broadband, 1.6 mu m Er/sup 3+/ doped silica fibre amplifier , 1990 .

[62]  M. Potenza,et al.  Thulium-doped tellurite fiber amplifier , 2004, IEEE Photonics Technology Letters.

[63]  T. Ono,et al.  1.49-/spl mu/m-band gain-shifted thulium-doped fiber amplifier for WDM transmission systems , 2002 .

[64]  Animesh Jha,et al.  Effect of nano-scale crystal field on the broadening of Er3+- emission in sodium tellurite glass ceramics. , 2008, Optics express.

[65]  J. Lousteau,et al.  Fluorogermanate glass with reduced content of OH-groups for infrared fiber optics , 2009 .

[66]  Seongwoo Yoo,et al.  Bismuth doped fiber laser and study of unsaturable loss and pump induced absorption in laser performance. , 2008, Optics express.

[67]  I. White,et al.  Tellurite glass thin films on silica and polymer using UV (193 nm) pulsed laser ablation , 2011 .

[68]  Ricardo O. Freire,et al.  3-phenyl-4-aroyl-5-isoxazolonate complexes of Tb3+ as promising light-conversion molecular devices , 2007 .

[69]  Raouf El-Mallawany,et al.  Tellurite Glasses Handbook: Physical Properties and Data , 2014 .

[70]  R Osellame,et al.  Femtosecond laser written optical waveguide amplifier in phospho-tellurite glass. , 2010, Optics express.

[71]  S. Corzine,et al.  Widely tunable mode-hop free external cavity quantum cascade lasers for high resolution spectroscopy and chemical sensing , 2008 .

[72]  Younes Messaddeq,et al.  Thermally enhanced cooperative energy-transfer frequency upconversion in terbium and ytterbium doped tellurite glass , 2003 .

[73]  Shibin Jiang,et al.  Single-mode low-loss optical fibers for long-wave infrared transmission. , 2010, Optics letters.

[74]  Changhong Qi,et al.  Spectra and lasing properties of Er3+, Yb3+:phosphate glasses , 2003 .

[75]  H. Moos,et al.  MULTIPHONON ORBIT-LATTICE RELAXATION OF EXCITED STATES OF RARE-EARTH IONS IN CRYSTALS. , 1968 .

[76]  B. Capoen,et al.  Raman and optical reflection spectra of germanate and silicate glasses , 2005 .

[77]  Animesh Jha,et al.  Multiple rare earth emissions in a multicore tellurite fiber with a single pump wavelength. , 2007, Optics express.

[78]  K. Sato,et al.  Polymorphic transformations in crystal growth , 1993 .

[79]  K. Selvaraju,et al.  Structural and luminescence investigations on Sm3+ doped sodium fluoroborate glasses containing alkali/alkaline earth metal oxides , 2011 .

[80]  P. Baer,et al.  Band Spectra in the Schumann Region of NO and N2+ with Enriched Nitrogen-15 , 1952, Nature.

[81]  R. S. Quimby,et al.  MODIFIED JUDD-OFELT TECHNIQUE AND APPLICATION TO OPTICAL TRANSITIONS IN PR3+-DOPED GLASS , 1994 .

[82]  Xueming Liu,et al.  Intense green upconversion emission in Tb3+/Yb3+ codoped alumino-germano-silicate optical fibers. , 2010, Applied optics.

[83]  Kathleen Richardson,et al.  Tellurite glasses with peak absolute Raman gain coefficients up to 30 times that of fused silica. , 2003, Optics letters.

[84]  Boris N. Chichkov,et al.  Fabrication of buried waveguides and nanocrystals in Er3+‐doped oxyfluoride glass , 2005 .

[85]  Animesh Jha,et al.  Tm(3+)/Ho(3+) codoped tellurite fiber laser. , 2008, Optics letters.

[86]  A. Seddon,et al.  A novel approach for the fabrication of planar waveguides from heavy metal oxide glasses , 2009 .

[87]  A. Jha Kinetics of glass formation of heavy metal fluoride melts , 1991 .

[88]  P. Schmidt,et al.  Inorganic Luminescent Materials: 100 Years of Research and Application , 2003 .

[89]  Gin Jose,et al.  Spectroscopic properties of Er3+ doped phospho-tellurite glasses , 2006 .

[90]  Animesh Jha,et al.  Enhancement in pump inversion efficiency at 980 nm in Er(3+), Er(3+)/Eu(3+)+ and Er(3+)/Ce(3+) doped tellurite glass fibers. , 2006, Optics express.

[91]  Renata Reisfeld,et al.  Radiative and non-radiative transition probabilities and quantum yields for excited states of Er3+ in germanate and tellurite glasses , 1974 .

[92]  Y. Choi,et al.  Enhanced /sup 4/I/sub 11/2//spl rarr//sup 4/I/sub 13/2/ transition rate in Er/sup 3+//Ce/sup 3+/-codoped tellurite glasses , 1999 .

[93]  S. Jackson,et al.  Power scaling method for 2-microm diode-cladding-pumped Tm(3+)-doped silica fiber lasers that uses Yb(3+) codoping. , 2003, Optics letters.

[94]  S. Jackson,et al.  Midinfrared holmium fiber lasers , 2006, IEEE Journal of Quantum Electronics.

[95]  Animesh Jha,et al.  Compositional effects and spectroscopy of rare earths (Er3+, Tm3+, and Nd3+) in tellurite glasses , 2002 .

[96]  R. Reisfeld,et al.  Energy transfer between samarium and europium in phosphate glasses , 1972 .

[97]  R. Jose,et al.  Tailoring of Raman gain bandwidth of tellurite glasses for designing gain-flattened fiber Raman amplifiers , 2008 .

[98]  R Osellame,et al.  Active waveguides written by femtosecond laser irradiation in an erbium-doped phospho-tellurite glass. , 2008, Optics express.

[99]  T. J. Kippenberg,et al.  Ultra-high-Q toroid microcavity on a chip , 2003, Nature.

[100]  A. F. Wells,et al.  Structural Inorganic Chemistry , 1971, Nature.

[101]  W. A. Sibley,et al.  Optical transitions of Er 3 + ions in fluorozirconate glass , 1983 .

[102]  K. Vahala Optical microcavities , 2003, Nature.

[103]  D. S. Gross,et al.  Influence of inorganic cations and histone proteins on the terbium(III)-nucleic acid interaction. , 1981, Biochimica et biophysica acta.

[104]  Zejin Liu,et al.  Gain improvement by internal laser cavity in Tm(3+)Yb(3+)-co-doped tellurite fiber amplifier pumped by 980-nm laser. , 2006, Optics Express.

[105]  Thomas Jüstel,et al.  Rare earth phosphors: fundamentals and applications , 1998 .

[106]  Anant Kumar Singh,et al.  Spectroscopic properties of Ho3+ ions doped in tellurite glass. , 2003, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[107]  Yong Ding,et al.  Optical waveguides prepared in Er3+-doped tellurite glass by Ag+-Na+ ion exchange , 2001, SPIE OPTO.

[108]  T. Sekiya,et al.  Raman spectra of MOTeO2 (M = Mg, Sr, Ba and Zn) glasses , 1994 .

[109]  Shirō Takahashi,et al.  5 – Preform and Fiber Fabrication , 1991 .

[110]  J. N. Sandoe,et al.  Variation of Nd3+ cross section for stimulated emission with glass composition , 1971 .

[111]  R. Reisfeld,et al.  Intensity parameters and laser analysis of Pr3+ and Dy3+ in oxide glasses☆ , 1979 .

[112]  C. Ronda,et al.  Phosphors for Lamps and Displays: An Applicational View , 1995 .

[113]  P. D. Sarkisov,et al.  Structure of lead germanate glasses by Raman spectroscopy , 2001 .

[114]  R. Kanno,et al.  Characteristics and mechanism of Tb3+ up-conversion in Nd3+–Yb3+–Tb3+ co-doped ZrF4-based fluoride glass under 800 nm excitation , 1999 .

[115]  Aoxiang Lin,et al.  Solid-core tellurite glass fiber for infrared and nonlinear applications. , 2009, Optics express.

[116]  Q. Nie,et al.  Strong visible up-conversion emission in Tb3+, Tm3+ and Tb3+-Tm3+ co-doped tellurite glasses sensitized by Yb3+. , 2007, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[117]  J. M. Parker Optical properties of halide glasses , 1989 .

[118]  C. Townes The first laser , 2003 .

[119]  Y. Mimura,et al.  Scattering characteristics in reheated fluorozirconate glasses , 1985 .

[120]  D. Linde,et al.  Raman Scattering from Nonequilibrium LO Phonons with Picosecond Resolution , 1980 .

[121]  H. Verweij,et al.  The structure of lithium, sodium and potassium germanate glasses, studied by Raman scattering , 1979 .

[122]  F Benabid,et al.  Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen. , 2004, Physical review letters.

[123]  E. Snitzer,et al.  Blue, green and red fluorescence and energy transfer of Eu3+ in fluoride glasses , 1995 .

[124]  M. Shimizu,et al.  Fluoride-based erbium-doped fiber amplifier with inherently flat gain spectrum , 1996, IEEE Photonics Technology Letters.

[125]  C. K. Jayasankar,et al.  Optical properties of Sm3+ ions in lithium borate and lithium fluoroborate glasses , 2000 .

[126]  C. Barthou,et al.  Judd–Ofelt analysis and improvement of thermal and optical properties of tellurite glasses by adding P2O5 , 2010 .

[127]  Ishwar D. Aggarwal,et al.  Fabrication of low-loss IR-transmitting Ge/sub 30/As/sub 10/Se/sub 30/Te/sub 30/ glass fibers , 1994 .

[128]  M. Shimizu,et al.  Tm-doped fiber amplifiers for 1470-nm-band WDM signals , 2000, IEEE Photonics Technology Letters.

[129]  Neil P. Sessions,et al.  Spectroscopy of Tm3+-doped tellurite glasses for 1470 nm fiber amplifier , 2002 .

[130]  L. Kazovsky,et al.  Wide-band tuning of the gain spectra of one-pump fiber optical parametric amplifiers , 2004, IEEE Journal of Selected Topics in Quantum Electronics.

[131]  S. E. Stokowski,et al.  Nd-doped laser glass spectroscopic and physical properties , 1981 .

[132]  J. Lousteau,et al.  Investigation on germanium oxide-based glasses for infrared optical fibre development , 2009 .

[133]  M. Poulain,et al.  Glass Forming Ability Criterion , 1987 .

[134]  A. Jha,et al.  A review of the role of DSC analysis in the design of fluorozirconate glasses for fibre optic applications , 1994 .

[135]  K. Vahala,et al.  Ultralow-threshold Raman laser using a spherical dielectric microcavity , 2002, Nature.

[136]  W. Fowler,et al.  Relation between Absorption and Emission Probabilities in Luminescent Centers in Ionic Solids , 1962 .

[137]  E. M. Vogel,et al.  Tellurite glass: a new candidate for fiber devices , 1994 .

[138]  J. M. Parker Properties of fluoride glasses , 1990 .

[139]  Alessandro Chiasera,et al.  Spherical whispering‐gallery‐mode microresonators , 2010 .

[140]  G. Ghosh Sellmeier Coefficients and Chromatic Dispersions for Some Tellurite Glasses , 1995 .

[141]  Ligang Zhu,et al.  Luminescence of Ce3+/Tb3+ ions in lithium-barium-aluminosilicate oxyfluoride glasses , 2010 .

[142]  A. Varshneya Fundamentals of Inorganic Glasses , 1993 .

[143]  V. K. Rai,et al.  Optical properties of Tb3+ doped tellurite glass , 2004 .

[144]  T. King,et al.  High-peak-power operation of a Q-switched Tm3+-doped silica fiber laser operating near 2 microm. , 2003, Optics letters.

[145]  M. Brierley Neodymium-doped fluoro-zirconate fibre laser , 1987 .

[146]  Grant V. M. Williams,et al.  Photostimulated luminescence from fluorochlorozirconate glass ceramics and the effect of crystallite size , 2005 .

[147]  Zhidong Yao,et al.  Highly efficient high-power thulium-doped germanate glass fiber laser. , 2007, Optics letters.

[148]  M. Weber,et al.  Induced-emission cross sections for the 4 F 3/2 → 4 I 13/2 transition in neodymium laser glasses , 1975 .

[149]  J. Lousteau,et al.  The Structural, Thermal and Optical Analyses ofMulticomponent GeO2 Glasses for Engineering Mid-IR Fibre Chemical Sensing , 2010 .

[150]  Kerry J. Vahala,et al.  Fiber-coupled erbium microlasers on a chip , 2003 .

[151]  A. Bornstein,et al.  Laser emission cross-section and threshold power for laser operation at 1077 nm and 1370 nm; chalcogenide mini-lasers doped by Nd3+ , 1982 .

[152]  Tokuro Nanba,et al.  Coordination change of Te atoms in binary tellurite glasses , 1994 .

[153]  Xin Jiang,et al.  Mid-IR optical fibres for chemical and biological sensing in the 2–15 μm spectral range , 2011, 2011 IEEE Photonics Society Summer Topical Meeting Series.

[154]  R. Reisfeld,et al.  Optical characteristics and intensity parameters of Sm3+ in GeO2, ternary germanate, and borate glasses , 1975 .

[155]  Animesh Jha,et al.  Infrared emission and energy transfer in Tm(3+), Tm(3+)-Ho(3+) and Tm(3+)-Yb(3+)-doped tellurite fibre. , 2007, Optics express.

[156]  Guang Zhang,et al.  Watt-level ~2 μm laser output in Tm3+-doped tungsten tellurite glass double-cladding fiber. , 2010, Optics letters.

[157]  Tran Thi Cham,et al.  High Q-factor micro-cavity laser: Fabrication and lasing emission properties , 2009 .

[158]  Angela B. Seddon,et al.  Fluorotellurite glasses with improved mid-infrared transmission , 2003 .

[159]  Steven H. Morgan,et al.  Raman spectra and thermal analysis of a new lead–tellurium–germanate glass system , 1997 .

[160]  Xiaoyong Huang,et al.  Recent progress in quantum cutting phosphors , 2010 .

[161]  J. Wong,et al.  Glass Structure by Spectroscopy , 1976 .

[162]  Norman P. Barnes,et al.  Optical properties of Tm3+ ions in alkali germanate glass , 2006 .

[163]  Animesh Jha,et al.  Development of novel ternary tellurite glasses for high temperature fiber optic mid-IR chemical sensing , 2007 .

[164]  Stuart D. Jackson,et al.  High-power broadly tunable Ho3+-doped silica fibre laser , 2004 .

[165]  T. Maiman Stimulated Optical Radiation in Ruby , 1960, Nature.

[166]  P. V. Mamyshev,et al.  Mutual influence of the parametric effects and stimulated Raman scattering in optical fibers , 1990 .

[167]  Albert Einstein,et al.  Strahlungs-Emission und ­Absorption nach der Quantentheorie , 1916 .

[168]  D Reid,et al.  Femtosecond soliton pulse delivery at 800nm wavelength in hollow-core photonic bandgap fibers. , 2004, Optics express.

[169]  Terence A. King,et al.  Thulium sensitised holmium-doped CW fluoride fibre laser of high efficiency , 1992 .

[170]  E. Snitzer Optical Maser Action of Nd + 3 in a Barium Crown Glass , 1961 .

[171]  Kunimasa Saitoh,et al.  Novel design of inherently gain-flattened discrete highly nonlinear photonic crystal fiber Raman amplifier and dispersion compensation using a single pump in C-band. , 2005, Optics express.

[172]  Shyam Bahadur Rai,et al.  Energy transfer in Er:Eu:Yb co-doped tellurite glasses: Yb as enhancer and quencher , 2009 .

[173]  A. Jha,et al.  A parametric study of Er3+-ions doped Phospho-tellurite glass thin films by pulsed laser deposition , 2010 .

[174]  Jianhui Yang,et al.  Comparative investigation on energy transfer mechanisms between Er3+ and Ce3+ (Eu3+, Tb3+) in tellurite glasses , 2004 .

[175]  Y. Miura,et al.  Refractive-index profiles and propagation losses of Er3+-doped tungsten tellurite glass waveguide by Ag+–Na+ ion-exchange , 2006 .

[176]  D. Hewak,et al.  Application of a modified Judd-Ofelt theory to praseodymium-doped fluoride glasses , 1995 .

[177]  V. K. Rai,et al.  Fluorescence intensity ratio technique for Sm3+ doped calibo glass. , 2008, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[178]  K. Hoshino,et al.  Gain flattened Er3+-doped tellurite fibre amplifier for WDM signals in the 1581–1616 nm wavelength region , 2000 .

[179]  Animesh Jha,et al.  Near infrared spectroscopic investigation of Tm3+–Yb3+ co-doped tellurite glasses , 2004 .

[180]  C. Burrus,et al.  Neodymium‐doped silica lasers in end‐pumped fiber geometry , 1973 .

[181]  Hiroji Masuda,et al.  Ultra-wideband tellurite-based Raman fibre amplifier , 2001 .

[182]  Ian Bennion,et al.  Fiber Bragg gratings inscribed using 800nm femtosecond laser and a phase mask in single- and multi-core mid-IR glass fibers. , 2009, Optics express.

[183]  Luigi Tallone,et al.  Direct writing of channel waveguide on a tellurite glass using a focused ultraviolet laser beam , 2002, Proceedings of 2002 IEEE/LEOS Workshop on Fibre and Optical Passive Components (Cat.No.02EX595).

[184]  Animesh Jha,et al.  Tellurite glass lasers operating close to 2 μm , 2010 .

[185]  Andrey Matsko,et al.  Practical Applications of Microresonators in Optics and Photonics , 2009 .

[186]  Periklis Petropoulos,et al.  Single-mode tellurite glass holey fiber with extremely large mode area for infrared nonlinear applications. , 2008, Optics express.

[187]  須藤 昭一,et al.  Optical fiber amplifiers : materials, devices, and applications , 1997 .

[188]  Nasser N Peyghambarian,et al.  Er3+-doped phosphate glasses for fiber amplifiers with high gain per unit length , 2000 .

[189]  Maurizio Ferrari,et al.  Er3+-doped tellurite waveguides deposited by excimer laser ablation , 2003 .

[190]  H. Maaref,et al.  Infrared to visible up-conversion study for erbium-doped zinc tellurite glasses , 2000 .

[191]  Anne C. Tropper,et al.  Fabrication and optical properties of lead‐germanate glasses and a new class of optical fibers doped with Tm3+ , 1993 .

[192]  A. Jha,et al.  980-nm diode-pumped Tm(3+)/Yb(3+)-codoped tellurite fiber for S-band amplification. , 2005, Optics letters.

[193]  M. Brenci,et al.  Ion beam irradiated channel waveguides in Er3+-doped tellurite glass , 2007 .

[194]  A. Jha,et al.  Green up-conversion in Yb3+–Tb3+ and Yb3+–Tm3+–Tb3+ doped fluoro-germanate bulk glass and fibre , 2010 .

[195]  Katsuhisa Tanaka,et al.  Effect of Poling Temperature on Optical Second‐Harmonic Intensity of Lithium Sodium Tellurite Glass , 2005 .

[196]  Animesh Jha,et al.  Gain characteristics of Er/sup 3+//Ce/sup 3+/ codoped , 2003 .

[197]  Alexey F. Kosolapov,et al.  Dispersion and guidance characteristics of microstructured 68TeO2 — 22WO3 — 8La2O3 — 2Bi2O3 glass fibres for supercontinuum generation , 2010 .

[198]  P. Russell,et al.  Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres. , 2004, Optics express.

[199]  Animesh Jha,et al.  A Yb3+/Tm3+/Ho3+ triply-doped tellurite fibre laser. , 2008, Optics express.

[200]  A. Jha,et al.  A Short Review on the Pulsed Laser Deposition of Er3+ Ion Doped Oxide Glass Thin Films for Integrated Optics , 2010 .

[201]  Y. Dimitriev,et al.  Phase diagram and infrared-spectral investigation of the 2TeO2 · V2O5-Na2O · V2O5 · 2TeO2 system , 1981 .

[202]  S. Fujihara,et al.  Porous Phosphor Thin Films of Oxyfluoride SiO2–BaMgF4: Eu2+ Glass–Ceramics Prepared by Sol–Gel Method , 2003 .

[203]  K. Kao,et al.  Dielectric-fibre surface waveguides for optical frequencies , 1966 .

[204]  T. Sekiya,et al.  Raman spectra of MO1/2TeO2 (M = Li, Na, K, Rb, Cs and Tl) glasses , 1992 .

[205]  A. Jha,et al.  High-Tg GeS2 based glasses for chemical sensing applications , 2009 .

[206]  S. Rai,et al.  Spectroscopic study of Er:Sm doped barium fluorotellurite glass. , 2010, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[207]  M. Pal,et al.  Performance comparison of Zr-based and Bi-based erbium-doped fiber amplifiers. , 2010, Optics letters.

[208]  Seiko Mitachi,et al.  Prediction of loss minima in infra-red optical fibres , 1981 .

[209]  Animesh Jha,et al.  Tellurite Glasses for Broadband Amplifiers and Integrated Optics , 2002 .

[210]  J. Ash,et al.  Market trends in optical networks — the service drivers and technology impact , 2008, 2008 10th Anniversary International Conference on Transparent Optical Networks.

[211]  Steve Madden,et al.  Tellurium dioxide Erbium doped planar rib waveguide amplifiers with net gain and 2.8 dB/cm internal gain. , 2010, Optics express.

[212]  Animesh Jha,et al.  Femtosecond mode-locked Tm(3+) and Tm(3+)-Ho(3+) doped 2 μm glass lasers. , 2010, Optics express.

[213]  Zhong-hong Jiang,et al.  The spectroscopic properties of Er(3+)-doped TeO(2)-Nb(2)O(5) glasses with high mechanical strength performance. , 2005, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[214]  T. Yamashita,et al.  Concentration and temperature effects on the spectroscopic properties of Tb3+ doped borosilicate glasses , 2007 .

[215]  Michael Bass,et al.  Solid-State Lasers , 2003 .

[216]  S. Calvez,et al.  Tunable laser operation of a Tm3+-doped tellurite glass laser near 2 μm pumped by a 1211 nm semiconductor disk laser , 2010 .

[217]  David N. Payne,et al.  Low-threshold tunable CW and Q-switched fibre laser operating at 1.55 μm , 1986 .

[218]  Jay R. Simpson,et al.  High-gain erbium-doped traveling-wave fiber amplifier , 1987 .

[219]  Animesh Jha,et al.  Efficient ~2 μm Tm 3+ -doped tellurite fiber laser , 2008 .

[220]  R. Reisfeld,et al.  Optical spectra and relaxation of Eu+3 in germanate glasses , 1973 .

[221]  R. Reisfeld,et al.  Energy transfer between Gd3+ and Sm3+ the effect of Gd3+ on quenching of Sm3+ and intensity parameters of Sm3+ in borate glasses , 1974 .

[222]  Y. Mimura,et al.  A core-clad composition for crystallization-free fluoride fibers , 1985, Journal of Lightwave Technology.

[223]  Animesh Jha,et al.  Structural origin of spectral broadening of 1.5-μm emission in Er 3+ -doped tellurite glasses , 2000 .

[224]  J. Méndez‐Ramos,et al.  The shape of the 1.55 μm emission band of the Er3+-dopant in oxyfluoride nano-scaled glass-ceramics , 2005 .

[225]  Setsuhisa Tanabe,et al.  Hydroxyl groups in erbium-doped germanotellurite glasses , 2001 .

[226]  L. Kazovsky,et al.  Broadband fiber optical parametric amplifiers. , 1996, Optics letters.

[227]  Elias Snitzer,et al.  Amplification in a Fiber Laser , 1964 .

[228]  Dawei Fang,et al.  Spectroscopic properties and thermal stability of Er3+-doped tungsten–tellurite glass for waveguide amplifier application , 2006 .

[229]  H. Poignant,et al.  High-efficiency CW thulium-sensitised holmium-doped fluoride fibre laser operating at 2.04 mu m , 1991 .

[230]  Stuart D. Jackson,et al.  The spectroscopic and energy transfer characteristics of the rare earth ions used for silicate glass fibre lasers operating in the shortwave infrared , 2009 .

[231]  S. Rai,et al.  Spectroscopic study of Sm:Ce ions co-doped in barium fluoroborate glass , 2010 .

[232]  R. S. Quimby 9 – Active Phenomena in Doped Halide Glasses , 1991 .

[233]  Yaron Silberberg,et al.  1.3 μm emission of neodymium and praseodymium in tellurite-based glasses , 1994 .

[234]  F. Benabid,et al.  Stimulated Raman Scattering in Hydrogen-Filled Hollow-Core Photonic Crystal Fiber , 2002, Science.