Rational Decisions, Random Matrices and Spin Glasses

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  A. Stuart,et al.  Portfolio Selection: Efficient Diversification of Investments , 1959 .

[3]  B. V. Bronk,et al.  Exponential Ensemble for Random Matrices , 1965 .

[4]  H. Markowitz Portfolio Selection: Efficient Diversification of Investments , 1971 .

[5]  C. Itzykson,et al.  The planar approximation. II , 1980 .

[6]  E. Elton Modern portfolio theory and investment analysis , 1981 .

[7]  J. S. Dehesa,et al.  Mathematical and Computational Methods in Nuclear Physics , 1984 .

[8]  M. Mézard,et al.  Spin Glass Theory and Beyond , 1987 .

[9]  J. Bouchaud,et al.  Mean field theory of dilute spin-glasses with power-law interactions , 1993 .

[10]  G. Parisi,et al.  Replica field theory for deterministic models: II. A non-random spin glass with glassy behaviour , 1994, cond-mat/9406074.

[11]  J. Bouchaud,et al.  Theory of Lévy matrices. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[12]  A perceptron with a skeletal weight-space , 1994 .

[13]  G. Parisi,et al.  Mean-field equations for spin models with orthogonal interaction matrices , 1995, cond-mat/9503009.

[14]  Anirvan M. Sengupta,et al.  Distributions of singular values for some random matrices. , 1997, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[15]  M. Stephanov,et al.  Random Matrices , 2005, hep-ph/0509286.