Collective surface plasmon resonance coupling in silver nanoshell arrays

Collective surface plasmon resonance (SPR) excitations in an ordered array of silver nanoshells have been theoretically studied using generalized Mie theory. Near- and far-field radiative coupling between the nanoshells in the array result in a non-monotonic shift of the collective SPR band. When the distance between the shells in the array approaches that of the collective SPR wavelength, we observe narrowing of the collective SPR band due to constructive interference between the scattered electric field from the particles in the array. Further increase of the distance between the nanoshells in the array leads to destructive interference and broadening of the collective SPR band.

[1]  M. Ausloos,et al.  Absorption spectrum of clusters of spheres from the general solution of Maxwell's equations. The long-wavelength limit , 1980 .

[2]  G. Schatz,et al.  Anisotropic polarizability tensor of a dimer of nanospheres in the vicinity of a plane substrate , 2005, Nanotechnology.

[3]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[4]  Michael Vollmer,et al.  Optical properties of metal clusters , 1995 .

[5]  U. Kreibig,et al.  Experimental Results and Discussion , 1995 .

[6]  George C Schatz,et al.  Plasmonic properties of film over nanowell surfaces fabricated by nanosphere lithography. , 2005, The journal of physical chemistry. B.

[7]  Qi-Huo Wei,et al.  Plasmon Resonance of Finite One-Dimensional Au Nanoparticle Chains , 2004 .

[8]  Naomi J. Halas,et al.  Surface enhanced infrared absorption (SEIRA) spectroscopy on nanoshell aggregate substrates , 2008 .

[9]  H. Szmacinski,et al.  Systematic study of the size and spacing dependence of Ag nanoparticle enhanced fluorescence using electron-beam lithography , 2006 .

[10]  D. Citrin Plasmon polaritons in finite-length metal-nanoparticle chains: the role of chain length unravelled. , 2005, Nano letters.

[11]  A. Hohenau,et al.  Multipolar surface plasmon peaks on gold nanotriangles. , 2008, The Journal of chemical physics.

[12]  Jonathan Tennyson,et al.  Electron collisions with the CF3 radical using the R-matrix method , 2003 .

[13]  U. Kreibig,et al.  Interface decay channel of particle surface plasmon resonance , 2003 .

[14]  E. Coronado,et al.  The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment , 2003 .

[15]  C. Haynes,et al.  Nanoparticle Optics: The Importance of Radiative Dipole Coupling in Two-Dimensional Nanoparticle Arrays † , 2003 .

[16]  M. Quinten,et al.  Absorption and elastic scattering of light by particle aggregates. , 1993, Applied optics.

[17]  J. Hupp,et al.  Synthesis of silver nanodisks using polystyrene mesospheres as templates. , 2002, Journal of the American Chemical Society.

[18]  Javier Aizpurua,et al.  Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption. , 2008, ACS nano.

[19]  R. V. Van Duyne,et al.  A comparative analysis of localized and propagating surface plasmon resonance sensors: the binding of concanavalin a to a monosaccharide functionalized self-assembled monolayer. , 2004, Journal of the American Chemical Society.

[20]  George C. Schatz,et al.  A nanoscale optical biosensor: The long range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles , 2004 .

[21]  Javier Aizpurua,et al.  Close encounters between two nanoshells. , 2008, Nano letters.

[22]  G. Mie Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen , 1908 .

[23]  D. Mackowski,et al.  Analysis of radiative scattering for multiple sphere configurations , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[24]  George C Schatz,et al.  Localized surface plasmon resonance spectroscopy near molecular resonances. , 2006, Journal of the American Chemical Society.

[25]  Z. Kam,et al.  Absorption and Scattering of Light by Small Particles , 1998 .

[26]  George C Schatz,et al.  Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography. , 2005, Nano letters.

[27]  Encai Hao,et al.  Optical properties of metal nanoshells , 2004 .

[28]  O. Hunderi,et al.  Optical absorption of ultrafine metal spheres with dielectric cores , 1978 .

[29]  B. Grzybowski,et al.  Synthesis of heterodimeric sphere-prism nanostructures via metastable gold supraspheres. , 2007, Angewandte Chemie.

[30]  C. Mirkin,et al.  Controlling anisotropic nanoparticle growth through plasmon excitation , 2003, Nature.

[31]  George C. Schatz,et al.  Nanoparticle optical properties: Far- and near-field electrodynamic coupling in a chain of silver spherical nanoparticles , 2008 .

[32]  Marcel Ausloos,et al.  Absorption spectrum of clusters of spheres from the general solution of Maxwell's equations. II. Optical properties of aggregated metal spheres , 1982 .